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Goals of the lecture

- Introduction to model selection

- Be familiar with common measures of model fit

- Tutorial on how to do it in practice (Real example)  



Which model is best?



There are many statistical methods used to ‘fit’ models to 
data and there are many possible scenarios from which 

mechanical model can be built.



The method best suited for your work will 
depend on your data and your question.
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What are some measures of model fit that 
you could use?
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depend on your data and your question.



R-squared

(Moindres carrés)

(R-carré)

What are some measures of model fit that 
you could use?

Hirotugu Akaike

AIC 
(uses least squares or log-likelihood but 

penalizes by number of fitted parameters)

Least squares

(Maximum de vraisemblance)Maximum likelihood
(izay manakaiky indrindra ny tena izy ry reto an)



Maximum likelihood

f(x|μ, σ2)



Maximum likelihood

f(x|μ, σ2)



Maximum likelihood

f(x|μ, σ2)



Likelihood

Examples:

R function : dbinom(x, size, prob, log=T)

R function : dbinom(8, 10, 0.835)  = ?

Vraisemblance



Likelihood

Examples:

R function : dbinom(x, size, prob, log=T)

R function : dbinom(8, 10, 0.835)  = 0.289

Vraisemblance



Optimization/maximization

From Tanjona Ramiadantsoa



Optimization/maximization

The R function ‘optim’ can be used to find 
minimum/maximum.
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Least squares

2K



Least squares

3K



Least squares

4K



Least squares

5K



Least squares



Least squares



What to choose?



Least square AIC

The smaller the AIC the better



Least square AIC

The smaller the AIC the better

More parameter is not always good



An example of model selection:
 Bartonella spp. in Madagascar rats



Bartonella spp. 
• Persistent erythrocytic bacteria that are sometimes zoonotic

• Vectored by ticks, fleas, sand flies, mosquitoes

• Some species infect humans
• Bartonella bacilliformis = Carrion’s disease

• Bartonella henselae = cat scratch fever

• Bartonella quintana = trench fever



We first collected samples from rats from two 
sites in Madagascar. 

(Ricker 1979) 



Statistically, we demonstrated an association between genotypes 
of Bartonella spp. found in rats and their ectoparasites.



Then, we asked: 
How does the rate of becoming 

infected vary with age?













Simple SI model

N



Age-prevalence data allows for powerful inference 
into the dynamics of pathogen transmission.

S I
βI

 

for a persistent, non-immunizing infection



Age-prevalence data allows for powerful inference 
into the dynamics of pathogen transmission.

S I

where λ, the force of infection, is the per capita rate at 
which susceptible hosts become infected

λ 



Age-prevalence data allows for powerful inference 
into the dynamics of pathogen transmission.

1-I I

where λ, the force of infection, is the per capita rate at 
which susceptible hosts become infected

with a persistent infection, 
we can assume that, if not 
infected, you must be 
susceptible….

λ 



1-I I
λ 

and σ is the rate of recovery from infection

σ

Age-prevalence data allows for powerful inference 
into the dynamics of pathogen transmission.



Age-prevalence data allows for powerful inference into
 the dynamics of pathogen transmission.

1-I I
λ 

1-I I

σ

λ 



dI(a)

da
= l(a) 1- I(a)( )

dI(a)

da
= l(a) 1- I(a)( ) -s I(a)

Age-prevalence data allows for powerful inference into
 the dynamics of pathogen transmission.

1-I(a) I(a)
λ(a) 

1-I(a) I(a)

σ

λ(a) 



dI(a)

da
= l(a) 1- I(a)( )

dI(a)

da
= l(a) 1- I(a)( ) -s I(a)

Age-prevalence data allows for powerful inference into
 the dynamics of pathogen transmission.

1-P(a) P(a)
λ(a) 

1-P(a) P(a) 

σ

λ(a) 

similar techniques can also be applied to age-
seroprevalence data for immunizing infections 

P(a)

P(a)

(1 - P(a)) - 𝜎(a)P(a))

(1 - P(a))

Compare using  AIC = 2K  - 2ln(L)



Let’s see which model works best 
for your data!



Look at the data !
Jereo aloha hoe manao ahoana



Try the model!
Andramo kely

dI(a)

da
= l(a) 1- I(a)( )



Keep trying! Alô fô !

dI(a)

da
= l(a) 1- I(a)( )

AIC =152

AIC =155



Keep trying!

AIC =114

AIC =126

dI(a)

da
= l(a) 1- I(a)( )



Keep trying!

AIC =114

AIC =126

AIC =113

dI(a)

da
= l(a) 1- I(a)( ) -s I(a)



We found that an SI model offered the best fit to B. phoceensis data 
while the SIS model offered the best fit to the B. elizabethae data.
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The age-structured FOI identifies age cohorts most influential in 
an epidemic. Juveniles showed the highest FOI.
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