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Goals of the lecture

- Introduction to model selection

- Be familiar with common measures of model fit

- Tutorial on how to do it in practice (Real example)



Which model is best?
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There are many statistical methods used to fit" models to
data and there are many possible scenarios from which
mechanical model can be built.
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Maximum likelihood (Maximum de vraisemblance)
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Maximum likelihood
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Maximum likelihood
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Likelihood Vraisemblance

SUMMARY FG3% FT%
Career 32.7 835

L@ = | [rexile)
[(B|z) = log L(0|x)

Examples:

R function : dbinom(X, size, prob, log=T)

m==) R function : dbinom(8, 10, 0.835) =7



Likelihood Vraisemblance

SUMMARY FG3% FT%
Career 32.7 835

L@ = | [rexile)
[(B|z) = log L(0|x)

Examples:

R function : dbinom(X, size, prob, log=T)

m==) R function : dbinom(8, 10, 0.835) =0.289



Optimization/maximization
A function and 1ts derivative

* What happen when the
derivative is:

f(x) and f'(x)

* negative?
* positive?
* zero?

+ reaching a maximum (finite)

value?

From Tanjona Ramiadantsoa



Optimization/maximization
A tunction and its derivative

* What happen when the
derivative is:

f(x) and f'(x)

& negative?
& positive?
* zero?

# reaching a maximum (finite)

value?

From Tanjona Ramiadantsoa

The R function ‘optim’ can be used to find
minimum/maximum.
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Least squares
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Least squares
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Least squares
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Adding covariates almost always increases
the R= - so a key gquestion is when to stop.



What to ch




Least square AIC

55,

AIC = N = In(
N

)+ 2K

N: Number of observations
$S.: Sum squareof errors
K: Number of parameters

The smaller the AIC the better



Least square AIC

More parameter is not always good

rd

AIC = N *1 (sse)@
— n N

N: Number of observations
$S.: Sum squareof errors
K: Number of parameters

(AIC = —2In(L) + 2k)

The smaller the AIC the better



An example of model selection:
Bartonella spp. in Madagascar rats

Epidemics 20 (2017) 56-66

Contents lists available at ScienceDirect

Epidemics

journal homepage: www.elsevier.com/locate/epidemics

Elucidating transmission dynamics and host-parasite-vector @Cmssmk
relationships for rodent-borne Bartonella spp. in Madagascar

Cara E. Brook*, Ying Bai®, Emily O. Yu?, Hafaliana C. Ranaivoson““, Haewon Shin®¢,
Andrew P. Dobson?, C. Jessica E. Metcalf*', Michael Y. Kosoy" ', Katharina Dittmar®'



Bartonella spp.

* Persistent erythrocytic bacteria that are sometimes zoonotic
 VVectored by ticks, fleas, sand flies, mosquitoes

* Some species infect humans
* Bartonella bacilliformis = Carrion’s disease
* Bartonella henselae = cat scratch fever
* Bartonella quintana = trench fever




We first collected samples from rats from two
sites in Madagascar.
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Statistically, we demonstrated an association between genotypes
of Bartonella spp. found in rats and their ectoparasites.
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Then, we asked:
How does the rate of becoming
infected vary with age?
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Simple SI model
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Age-prevalence data allows for powerful inference
into the dynamics of pathogen transmission.

Bl

for a persistent, non-immunizing infection
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which susceptible hosts become infected



Age-prevalence data allows for powerful inference
into the dynamics of pathogen transmission.

with a persistent infection, A
we can assume that, if not 1_1
infected, you must be
susceptible....

where A, the force of infection, is the per capita rate at
which susceptible hosts become infected



Age-prevalence data allows for powerful inference
into the dynamics of pathogen transmission.

1-1 I

N

and o is the rate of recovery from infection



Age-prevalence data allows for powerful inference into
the dynamics of pathogen transmission.
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Age-prevalence data allows for powerful inference into
the dynamics of pathogen transmission.

1-1(a) | 2@ I(a) di(a) _ I(a) (1—] (a))
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Age-prevalence data allows for powerful inference into
the dynamics of pathogen transmission.

1-P@@) |23 | p(a)
1-P(a) | 2@, | p(a)

17E) - f(a) (1 -pea)
da

d P
d'f) = I(a) (1-P(@)-0a(a)P(a))

Compare using AIC = 2K - 2In(L)

similar technigues can also be applied to age-
seroprevalence data for immunizing infections



Let’s see which model works best
for your datal



Look at the data !
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Keep trying!
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Keep trying!
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We found that an SI model offered the best fit to B. phoceensis data
while the SIS model offered the best fit to the B. elizabethae data.
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The age-structured FOI identifies age cohorts most influential in

an epidemic. Juveniles showed the highest FOI.
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