MODELING IN PRACTICE: THE LIFE CYCLE OF A MODELING PROJECT, FROM CONCEPTION TO PUBLICATION - The example of Buruli ulcer in Cameroon -

Researcher, Institut de Recherche pour le Développement

Associate Scientific Director, PIVOT Madagascar

E²M² Workshop, Ranomafana, March 2024

- 1. Development of the study concept and question
- 2. Literature review
- 3. Data collection
- 4. Construction of model framework
- 5. Model analyses and selection
- 6. Model validation
- 7. Manuscript writing and submission

Development of the study concept

- What is your question?
- Why is it interesting?
- Who is interested?
- Can it be narrowed down to a question about specific quantitative relationships?

Literature review

- Who has tried to answer this before and how did they do it?
 - Empirical studies

ii

- Modeling studies
- What are these studies short-comings?
- Are there already parameter estimates or data sets to help you answer

- What do you need to characterize?
 - Spatial and/or temporal dynamics
 - o Relationships between parameters or systems

Month

Introduction

- What drawbacks of previous studies can I mitigate?
- What type of modeling is necessary to answer my question?
 - Statistical: GLM, spatial, time-series, etc.
 - Mathematical: population based, individual based
- What modeling elements are necessary for my question?
 - Stochasticity
 - Compartments and complexity

Model analysis, selection and validation

V

- What model(s) best fit my data and explain my question?
 - Comparison of alternative models and application of selection procedures
- Does the selected model suffer from any substantial drawbacks?
 - Statistical models: verification of model assumptions
 - Mathematical models: sensitivity analyses and out-of-sample predictions

Without data collection

- 1. Purely theoretical studies
- 2. Parametrization based on published studies
 - Systematic reviews and meta-analyses
 - Experimental and field studies

- 1. Development of the study concept
- 2. Literature Review
- 3. Data collection
- 4. Construction of model framework
 - Dynamic equations and code
 - Relationships between parameters
- 5. Model analyses and selection
 - Parametrization
 - Simulations and debugging
- 6. Model validation
 - o Model validation
 - o Sensitivity analyses
- 7. Manuscript writing and submission

- 1. Development of the study concept
- 2. Literature Review
- 3. Data collection
- 4. Construction of model framework
 - Statistical vs. Mathematical model
 - Model better adapted to our data
- 5. Model analyses and selection
 - Descriptive, univariate and multivariate
 - Parametrization and simulations
- 6. Model validation
 - Model validation, comparison
 - Sensitivity analyses
- 7. Manuscript writing and submission

With data collection

- Data already collected for other purposes
 - Focus only on analyses
 - Need to understand data limitations and quality
 - Need to adapt modeling to the available data
- 2. Data collected for the modeling project
 - Very time consuming
 - Modeling is generally more straightforward

THE EXAMPLE OF BURULI ULCER IN CAMEROON

.....

Most affected : Children <15 years

25% cases with functional limitations

Source of images: <u>www.who.int</u> (2014)

Buruli ulcer: an emergent and neglected disease

.....

What is my question?

Why is it interesting?

Who has tried to answer this before and how?

What are these studies short-comings?

1. LITERATURE REVIEW & IDENTIFICATION OF THE PROBLEM

BU Risk factors

Proximity to stagnant or slow flowing waters

ii

iii Objectives of the project

To understand the effects of environmental factors on *M.ulcerans* ecology

To study the transmission of *M.ulcerans* from the aquatic environment to humans

What do I need to characterize?

Spatial and/or temporal dynamics?

Relationships between parameters or systems?

DATA COLLECTION & DESCRIPTIVE ANALYSES

Favourable environments

Regions of study

Marion et al. (2011, EID)

Landier et al. (2014, PLoS NTDs)

1. Fieldwork: Environmental sampling

2. Laboratory (CPC): Taxonomic identification & Pool composition

3. Laboratory (Angers): DNA extraction & Amplification

Seasonal fluctuations of *M. ulcerans in* freshwater ecosystems

2012

1

Prop. Positive pools

2013

Garchitorena et al. (2014, PloS NTDs)

What type of modeling is necessary to answer my question?

STATISTICAL ANALYSES TO UNDERSTAND M. ULCERANS ECOLOGY

Methodology: Multi-model approach

2

Environmental drivers of M. ulcerans: Akonolinga

2

Environmental drivers of M. ulcerans: Bankim

2

MU Positivity in Ecosystems

Categories (Comp 1)

Variable	Avg	.beta	Lower.CL	Upper.CL	Relative.Importance
(Intercept)	-10	0,13	-18,94	-1,32	1
PHYSICO-CHEMICAL PARAMETERS					
Water Flow (le	ntic) -1	,91	-3,25	-0,57	1
Water Flow (lot	tic) -2	,86	-4,38	-1,33	1
рН	-5	,52	-15,64	4,61	0,02
Temperature					
Dissolved Oxyge	en				
Conductivity					
Comp3	0,24		-0,57	1,06	0,05
Comp1	0,34		-0,24	0,92	0,02
Comp2	-0	,16	-0,85	0,53	0,01
COMMUNITY					
da <u>101</u>	Water Flow				рН
			-		<u> </u>
pt(^o			ν, _		
ata			ú		
ra ^{ci}			- -		
			<u>9</u>	*	
ن <i>–</i>					
ica	MU Absent	MU Preser	nt	MU Absent	MU Present
ine	Disolved	Oxvaen		Ten	nperature (°C)
ote					
ne _o			- 8-		<u> </u>
op		i	- %		
)O(4 -			N .		
cha∾ -			N		
pte _o			- 3	L	
	IIII Abaaat	LUL Derror		MU Abarrat	I III Descent
	MU Absent	MU Preser	າເ	MU Absent	MU Present

Why the two regions are so different?

2

Oxygen

.

Scenario 1: Favourable physico-chemical conditions

Scenario 2: Adverse physico-chemical conditions

Mostly intra-host

& Trophic transmission

What type of modeling is necessary to answer my question?

MATHEMATICAL MODELING TO UNDERSTAND BU TRANSMISSION

Dynamic model

Month

Mathematical Model

 $\begin{aligned} \frac{dS}{dt} &= \mu N - \lambda_{CH}(Month_i) S - \lambda_{VH}(Month_i) S - \mu S \\ \frac{dE}{dt} &= \lambda_{CH}(Month_i) S + \lambda_{CH}(Month_i) S - \sigma E - \mu E \\ \frac{dI}{dt} &= \sigma E - \varepsilon I - \mu I \\ \frac{dT}{dt} &= \varepsilon I - \gamma T - \mu T \end{aligned}$

Model simulations to account for:

- A range of initial parameters
- Uncertainties in rates of incubation (δ) and seeking treatment (ϵ)
- Different proxies of waterbug tranmsission and environmental transmission
- Linear risks or thresholds in the relationship MU-BU

Comparison of model fit using AIC and selection of best performing (2 AIC)

Results for Buruli ulcer temporal dynamics

3

Best temporal fit

Environmental transmission >>> water bug transmission

MU environmental concentration as linear predictor of BU cases

AT THIS STAGE WE ARE ALMOST DONE...

- What are the main results that provide the answer to my question?
 - 1 to 3 graphs
 - 1 to 3 tables
- What is the journal that best fits my study?
 - Scope, audience, impact factor, math focus
- How do I present my manuscript?
 - Introduction: set the stage to your question
 - Methodology: describe explicitly all steps for replicability
 - Results: clear and concise
 - Discussion: explain how your study improves previous knowledge

Conclusions

MODELING IN PRACTIVE: THE LIFE CYCLE OF A MODELING PROJECT, FROM CONCEPTION TO PUBLICATION - The example of Buruli ulcer in Cameroon -

Andrés Garchitorena

Researcher, Institut de Recherche pour le Développement

Associate Scientific Director, PIVOT Madagascar

E²M² Workshop Ranomafana, January 2020