Introduction to Linear Regression

Andrés Garchitorena

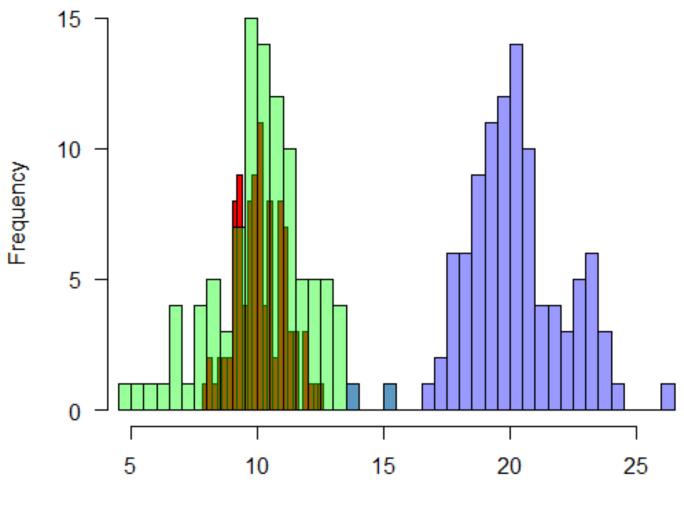
Institut de Recherche pour le Développement

E2M2 Workshop Ranomafana, March 2024

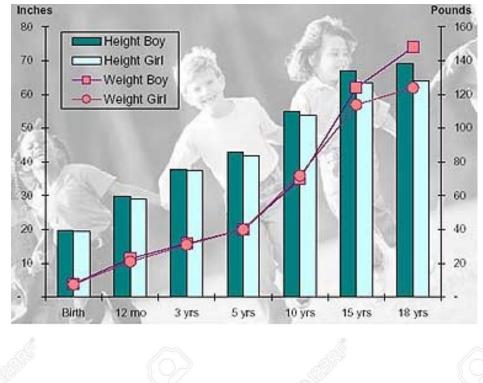
- 1. Remind some basic principles around linear regression and statistical models
- 2. Introduce the use of generalized linear models for the study of epidemiological questions
- 3. Provide an overview of the steps involved in developing a generalized linear model

1. Univariate Linear Models

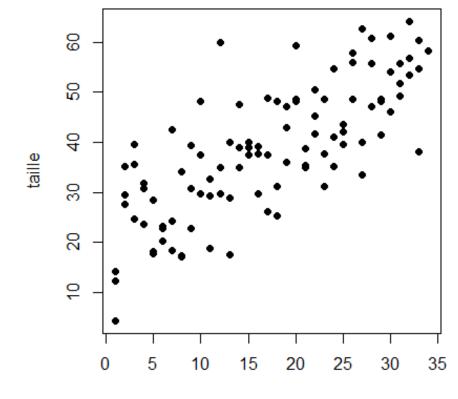
SOME BASICS FIRST...



norm1



Histogram of taille

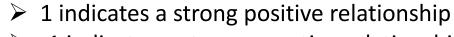


age

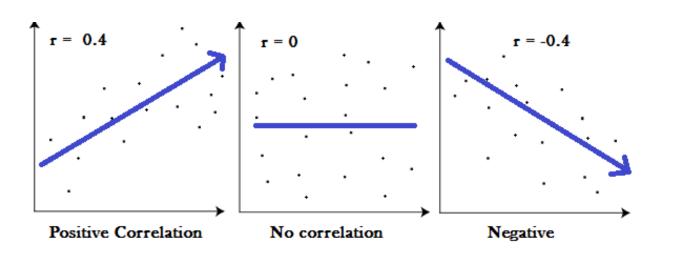
Correlation tests (Michelle's presentation)

Correlation coefficient formulas are used to find how strong a relationship is between data. Most common for quantitative variables is Pearson's, but there are non-parametric alternatives

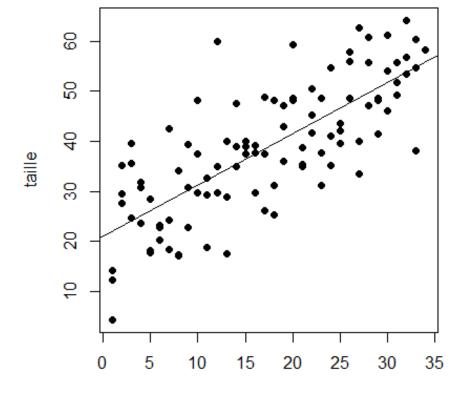
The formulas return a value between -1 and 1, where:



- -1 indicates a strong negative relationship 0 indicates no relationship

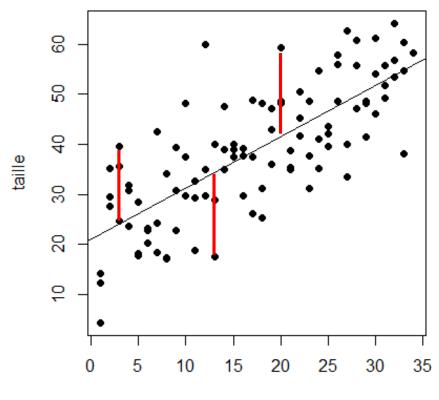


$$\mathbf{r} = \frac{\mathbf{n}(\Sigma \mathbf{x}\mathbf{y}) - (\Sigma \mathbf{x})(\Sigma \mathbf{y})}{\sqrt{\left[\mathbf{n}\Sigma \mathbf{x}^2 - (\Sigma \mathbf{x})^2 \right] \left[\mathbf{n}\Sigma \mathbf{y}^2 - (\Sigma \mathbf{y})^2 \right]}}$$



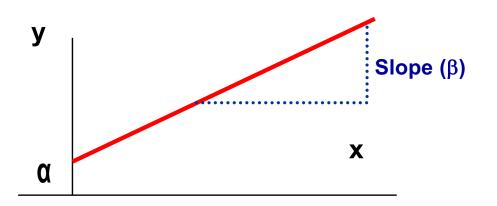
age

The goal is to minimize the difference between what we predict and what we observe

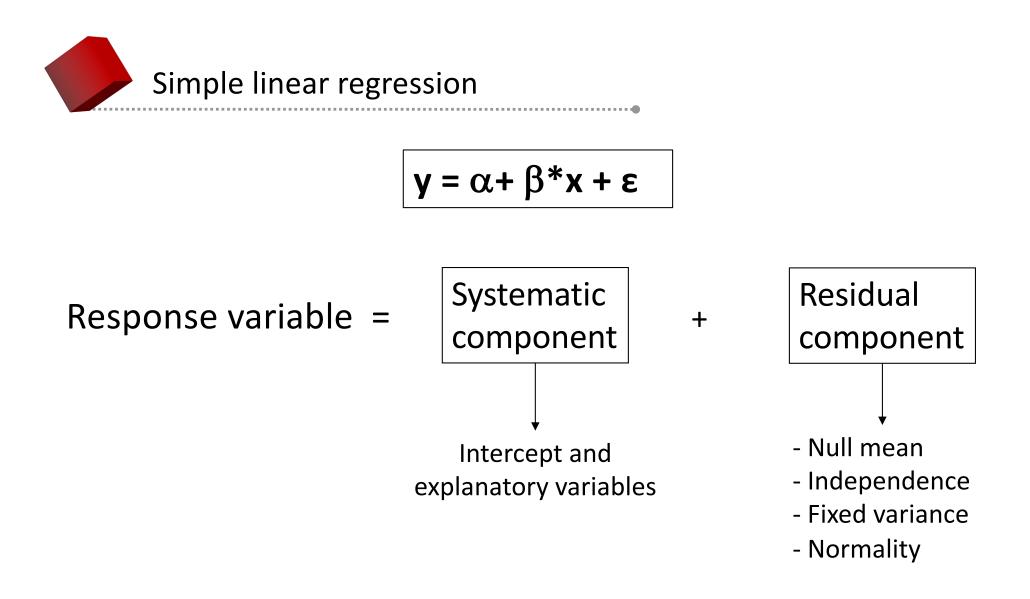


age

• Relation between 2 continuous variables



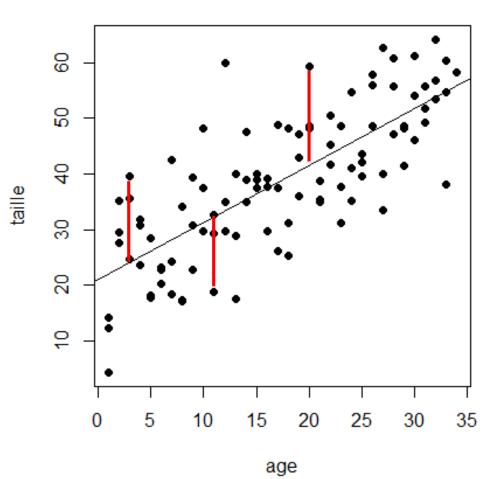
- Intercept (α)
 - Value of y when x is 0
- Regression coefficient β_1
 - Measures association between y and x
 - Amount by which y changes on average when x changes by one unit
- Error (ε)
 - Difference between the predicted values and observed values of y



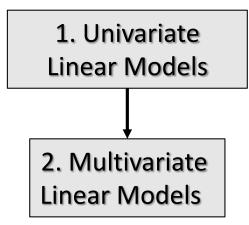
The R function to fit a linear model is Im() which uses the form **fitted.model <- Im(formula, data=data.frame)**

Simple linear regression

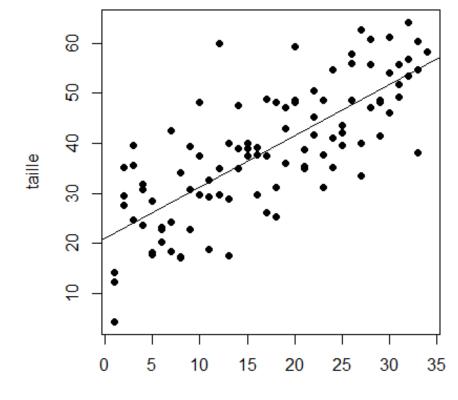
Taille (*cm*) = 20 + 1.15 x *Age* (*months*) + *Error*



A process is generally the result of several others...

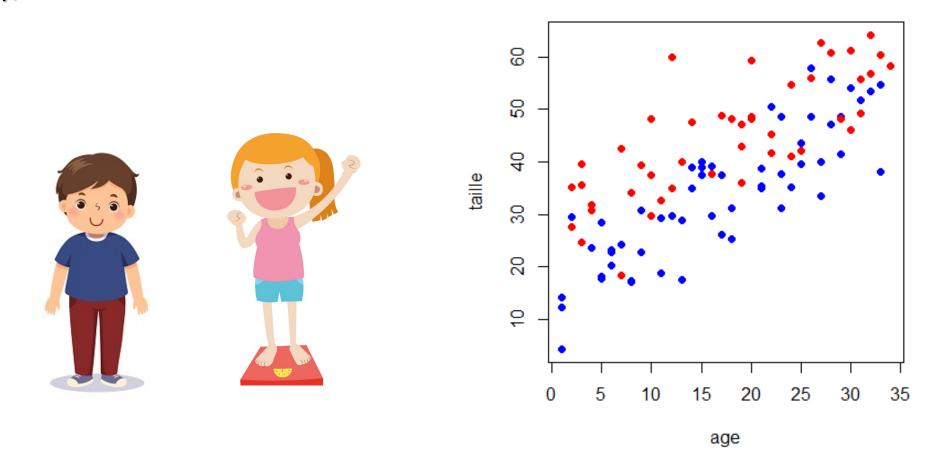


INTRODUCING MULTIVARIATE LINEAR MODELS

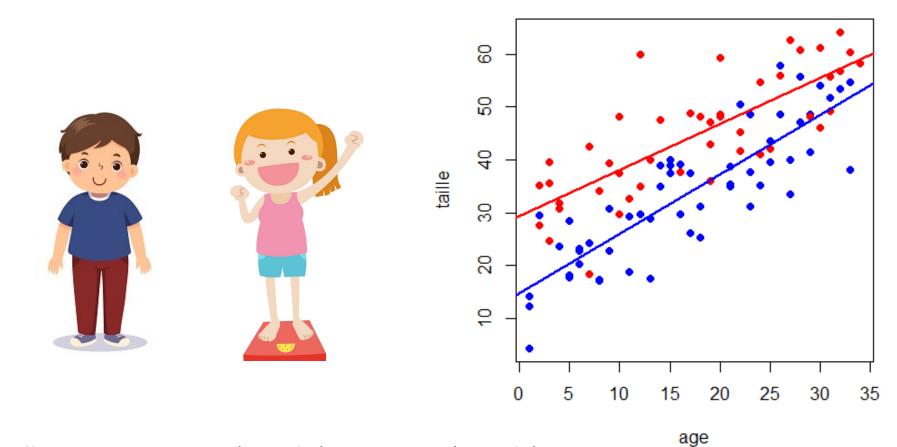


age

The effect of gender

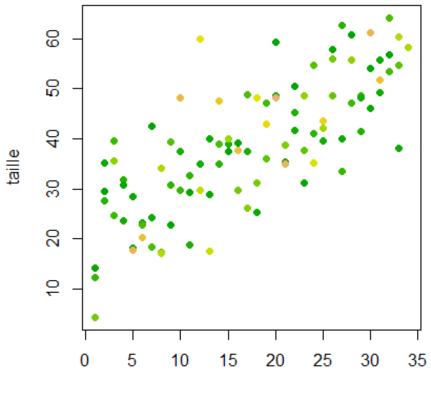


The effect of gender



Taille = 15 + 1.15 x Age (months) + 15 x Sexe (Female) + Error

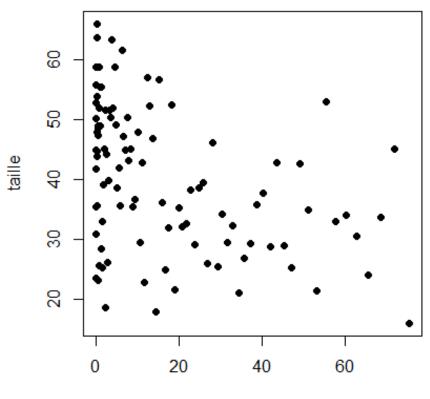
The effect of parasites



Green: low GI parasite burden Yellow: high GI parasite burden

age

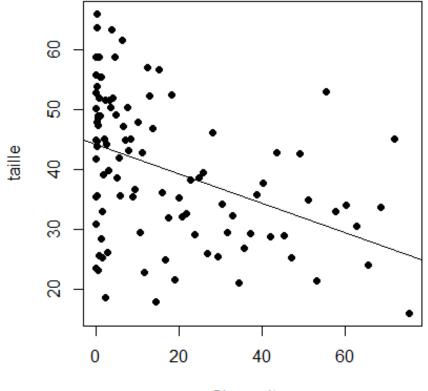
The effect of parasites



Glparasites

The effect of parasites

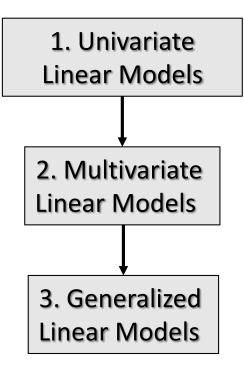
Taille = 45 - 0.3 x Nb Parasites + Error



Glparasites

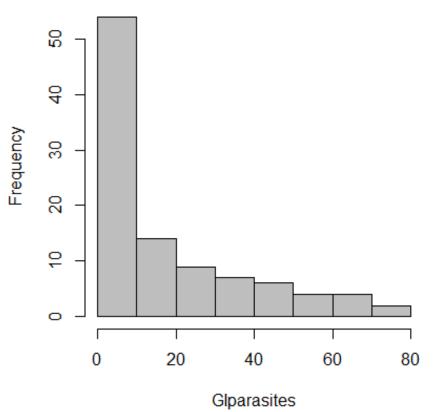
- Generalization of simple regression
- To describe the relationship between
 - The response variable, y
 - The explanatory variables, x = (x₁,x₂,...,x_n)
- The model: $y = \alpha + \beta_1 * x_1 + ... + \beta_n * x_n + \varepsilon$ with $\varepsilon \sim N(0, \sigma^2)$
- We generally select the model that best fits the data (best explains observed patterns) with the smallest number of variables

Unfortunately, not all things in life are normal...

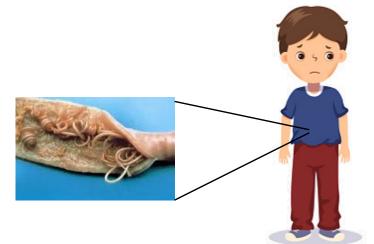


INTRODUCING GENERALIZED LINEAR MODELS

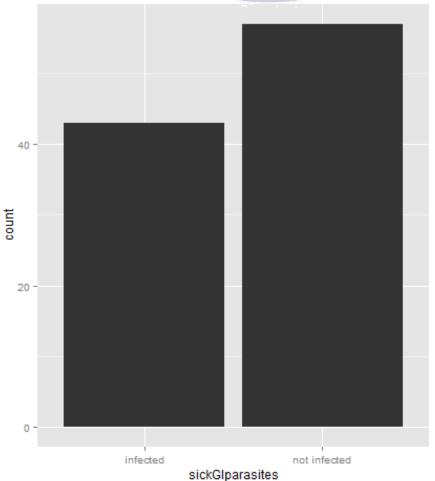
- Cannot be negative
- Discrete values
- The lower the values, the « less normal » they generally are.
- Examples:
 - Number of individuals of a species X
 - Number of people with a disease X



Histogram of Glparasites



- Values either 1 or 0 (either happened or not happened)
- The outcome variable is the number of successes /failures
- Examples:
 - Presence of a disease
 - Presence of a species



- In these types of situations, general linear models are not appropriate because:
 - The range of Y is restricted (e.g. binary, count)
 - \odot The variance of Y depends on the mean
- **Generalized linear models** extend the linear model framework to address both of these issues by using a linear predictor and a link function

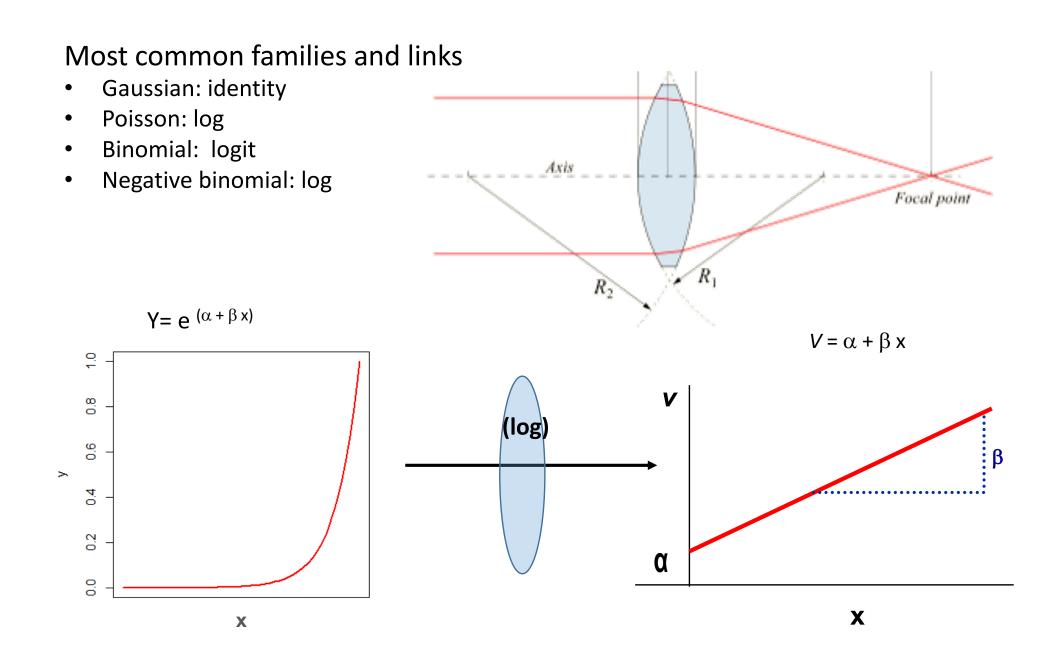
The R function to fit a general linear model is glm() which uses the form **fitted.model <- glm(formula, family="model family", data=data.frame)**

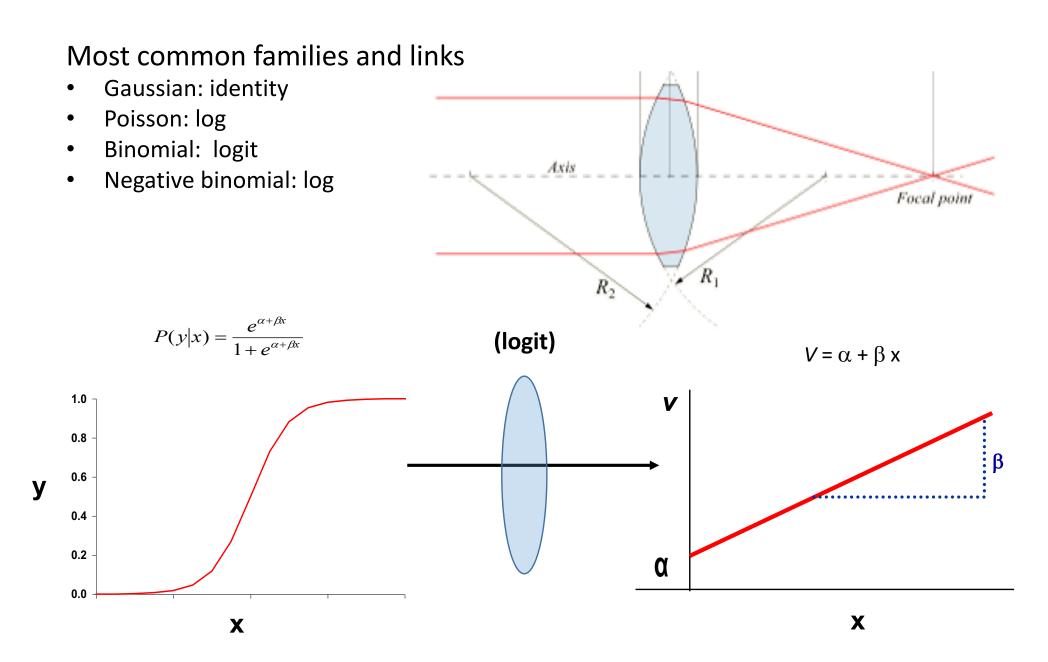
One generalization of multiple linear regression. Response, y, predictor variables x₁, x₂, The distribution of Y depends on the X's through a single linear function, the "linear predictor"

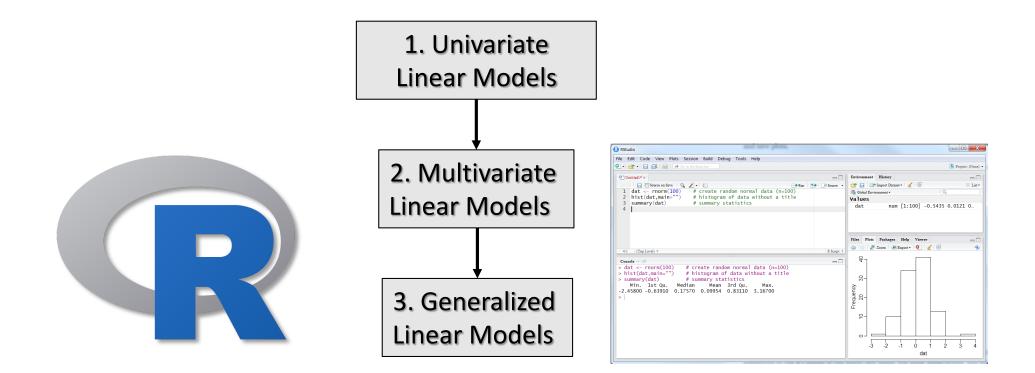
$$\nu = \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$$

A link function describes how the mean E(Y) = μ, depends on the linear predictor v.

$$\mu = m(\nu), \qquad \nu = m^{-1}(\mu) = l(\mu)$$



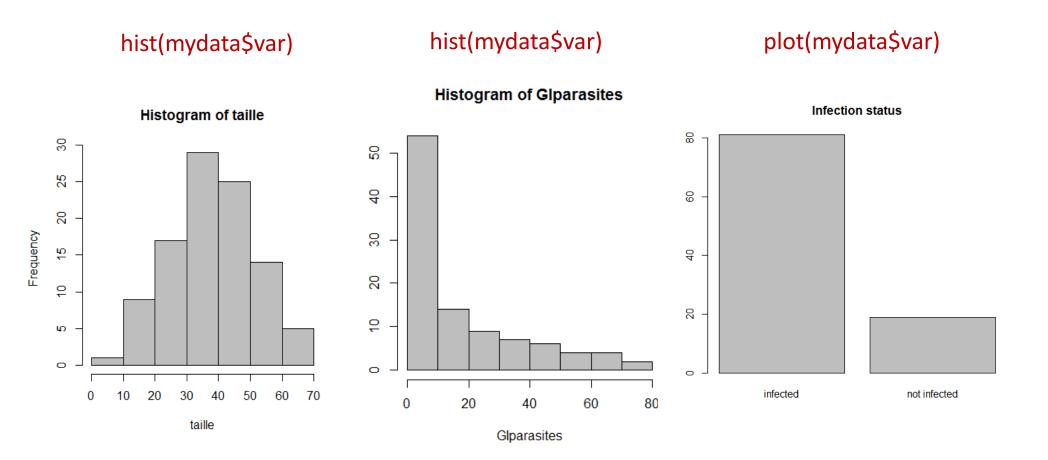




STEPS IN DEVELOPMENT OF STATISTICAL MODELS

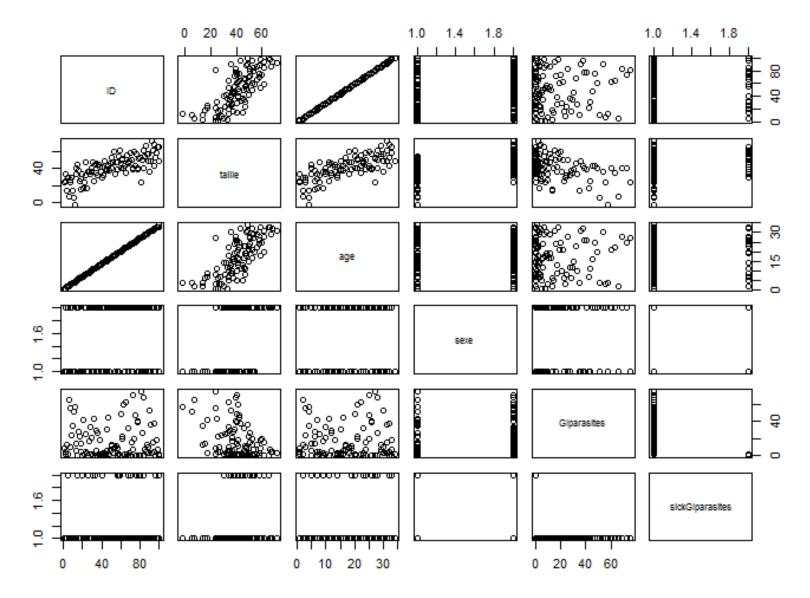
Database construction and descriptive analyses

- Distribution of the response variable
- Distribution of the explanatory variables



Database construction and descriptive analyses

Relationships between the variables pairs(mydata)



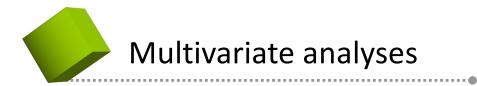
- Quantify the stregth of the relationship between the response variable and each explanatory variable
- Test the significance of the relationship between the response variable and each explanatory variable

```
Model1 = Im(taille~Glparasites, data=mydata)
  summary (Model1)
                                                                8
call:
lm(formula = taille ~ GIparasites)
                                                                4
Residuals:
                                                            aille
   Min
            1Q Median
                            30
                                  Мах
-31.605 -8.351 1.113
                         9,901 26,528
Coefficients:
                                                                8
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.8267 1.7154 26.714 < 2e-16
GIparasites -0.2927
                       0.0651 -4.495 1.91e-05 ***
                '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
               0
                                                                0
Residual standard error: 13.07 on 98 degrees of freedom
Multiple R-squared: 0.171,
                             Adjusted R-squared: 0.1625
                                                                            20
                                                                    0
F-statistic: 20.21 on 1 and 98 DF, p-value: 1.906e-05
```

Glparasites

40

60



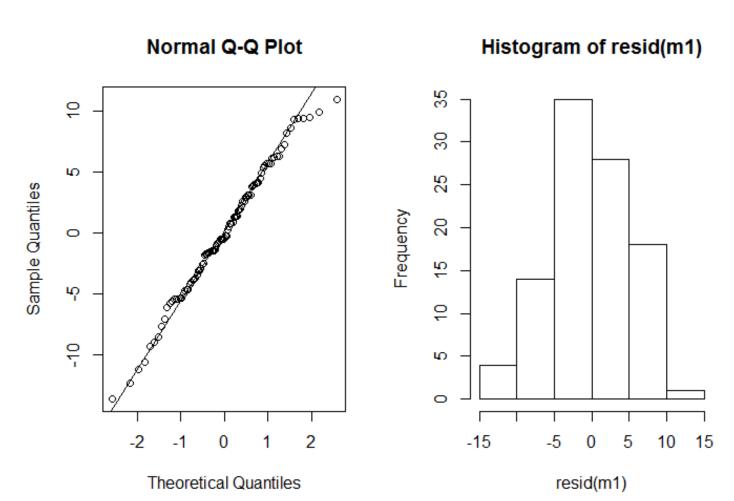
 Quantify the relationship between the response variable and a set of explanatory variables

```
Model1 = Im(taille^age+sexe+GIparasites, data=mydata)
summary (m1)
                        call:
                        lm(formula = taille ~ age + sexe + GIparasites, data = mydata)
                        Residuals:
                                      1Q Median
                            Min
                                                       3Q
                                                              мах
                        -16.9962 -2.6011 -0.1584
                                                   3,7331 12,0600
                        Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
                        (Intercept) 21.94145 1.28143 17.12
                                                               <2e-16 ***
                                              0.05584 18.33
                        age
                                    1.02365
                                                               <2e-16
                                                                     ***
                                              1.09295 9.96 <2e-16 ***
                        sexeMale
                                   10.88561
                        GIparasites -0.29930
                                              0.02652 -11.28 <2e-16 ***
                        Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                        Residual standard error: 5.323 on 96 degrees of freedom
                        Multiple R-squared: 0.8653, Adjusted R-squared: 0.8611
                        F-statistic: 205.5 on 3 and 96 DF, p-value: < 2.2e-16
```

• Select the set of predictors that best explains the response variable (backwards, forward, stepwise)

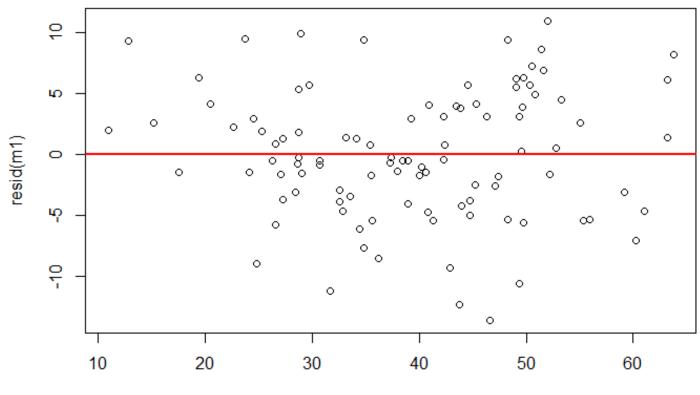
drop1 (m1) add1 (m1) step (m1)

• Check that model assumptions have not been violated



Normality of residuals

• Check that model assumptions have not been violated



Homogeneity of residuals

fitted(m1)

Correlation & Linear Regression in Epidemiology

Andrés Garchitorena

Researcher, Institut de Recherche pour le Développement

Institut Pasteur Madagascar Antananarivo, Juin 2020