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How do we choose the best
method of data collection?

‘—l—’ The ‘best method’ will depend

Empirical data on the question!
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* arational dialogue between researchers from multiple
disciplines through a series of iterative steps, ultimately
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* biologists and modellers collaborate at all stages of the
study, from initial model formulation and field study design,
to data collection and analysis.
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Model-Guided Field Work

* arational dialogue between researchers from multiple
disciplines through a series of iterative steps, ultimately
leading to improved causal inference and predictive power.

* biologists and modellers collaborate at all stages of the
study, from initial model formulation and field study design,

to data collection and analysis.

e applicable in both ecology AND epidemiology!
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Epidemiological Study Design

: Target: Population to which it might be
Target Population possible to extrapolate results of the study

Source Source: Population from which study
participants are drawn

Population

Study Study: Actual sampled population

Population

Well-designed studies allow us to make inferences about the target population



Different Study Types in Epidemiology
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Zika Virus: Cross- [ Case-

The Basics Sectional Control Ol

Virus in the family Flaviviridae (related to dengue,
yellow fever)

Spread by Aedes mosquitoes

Multiple routes of transmission: vector, sexual,
vertical




Zika Virus:
The Basics

Cross- Case-

Often causes no or mild symptoms
But can spread from pregnant women to
their fetuses and result in microcephaly,

severe brain malformations, other birth
defects

Currently cannot be prevented by
medications or vaccines (current vaccine
trials)
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Cross- Case-

Cross-Sectional Study

* Examines relationship between diseases and other variables of
interest (e.g. geographic distribution)

* Presence/absence of disease is determined for all members of a
population

« Commonly used to estimate prevalence (rather than incidence)
* A single snapshot of the population at a moment in time
* Exposure and outcome are assessed simultaneously
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Cross- Case-

Cross-Sectional Study

Seroprevalence (%)
0.4 533

Map generated by CartoDB® using OpenStreetMap®

Posen (2016)



Cross- Case-

Case Control Study

* The observational epidemiological study of persons with a disease of
interest and a suitable control group of persons without the disease

* Potential relationship of a suspected risk factor or an attribute to the
disease is examined by comparing the the disease and non-diseased
subjects with regard to how frequently the factor or attribute is
present in each of these groups.
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Cross- Case- ol

Sectional Control

Case Control Study

Case-Control study - 8 Brazilian hospitals

110 eligible cases 189 eligible controls
92 livebirths 18 stillbirths
10 exclusions 9 exclusions 16 exclusions
3 refusals 5 not necropsied in time 6 refusals
2 genetic diseases 4 specimen not collected 10 abnormal brain imaging
! 1 feto-fetal transfusion - P 1 ventriculomegaly
syndrome 1 calcification
2 specimen not collected 2 hydrocephaly
2 without control 6 other
y A y
82 livebirths included 9 stillbirths included 173 matched controls

v

91 cases with laboratory testing;
79 of these cases had CT scans

de Araujo (2018)



Cross- Case- ol

Sectional Control

Case-Control study - 8 Brazilian hospitals

Cases* Controls* Matched odds
ratio (95% Cl)

Serum, CSF samples, or macerated tissue
Zika-positive, of total cases or controls 32/91(35%) 0/173 87-0 (15-6-)
Zika-positive, of total cases or controls, adjustedt .- . 73-1(13:0-)
Cases, categorised by severity of microcephalyt
Severe 19/26 (73%)  0/51 52-4 (9-1-0)
Not severe 13/65(20%)  0/122 337 (5:6-0)

*Data are the number of all cases or controls who were positive for Zika virus, assessed by qRT-PCR or Zika virus-specific
IgM/total number of patients (%). 1Odds ratio when adjusted by smoking during pregnancy, maternal vaccination
against tetanus, diphtheria, and acellular pertussis during pregnancy, and skin colour. $Severe is defined as a head
circumference of more than 3 SD smaller than the mean for their sex and gestational age.**** Not severe was defined as
a head circumference of 2-3 SD smaller than the mean for their sex and gestational age. Matched odds ratios in this
subgroup are crude because of small numbers.

Table 5: Association between microcephaly and Zika virus infection

de Araujo (2018)




Cross- Case-
Cohort Study

* Enrolled group of people who have a common experience or
grouping.

* Age cohort, risk cohort

* General population sample

* Clinic based

* Prospective or retrospective
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Cohort Study
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Cross- Case-

Randomized Controlled Trial

* Experiment in which subjects are randomly allocated into groups
(test and control that are comparable) to receive or not to receive a
preventative or a therapeutic procedure or intervention.

* Results are assessed by comparison of rates of disease, death,
recovery, or other outcome in the study groups.

* Generally thought of as the most rigorous method of hypothesis
testing.

e Randomization should be blinded!
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Cross- Case-

Randomized Controlled Trial

Treatment

Study What is the effectiveness of a Zika
populatio containing vaccine?

Treatment
Outcome:
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Different Study Types in Epidemiology

Observational Experimental

Case-Control
Cross-Sectional

oot 1
In epidemiology, ‘ecological study’ refers to a study used to understand the

Ecological relationship between outcome and exposure at a population level, where
'population’ represents a group of individuals with a shared characteristic
such as geography, ethnicity, socio-economic status of employment.

Ex: What is the correlation between prevalence of TB and country-level GDP?

Randomized
Control Trial (RCT)

Retrospective
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Ecological Study (Sampling) Design

Observational

Experimental

Often with randomized site selection.

Transects

Sometimes nested

Plots L - Site A, B, C
- Each withplot1, 2,3

Points

Or, sometimes in a paired design.
- - 3 x pairs of (a) degraded vs. (b) pristine sites

Replication is key!



Ecological Study (Sampling) Design

Observational Experimental

TranseCtS Transects

Plots Plots

Points

Points

\ J \ J

[ |

Often with randomized site selection. . . _

, - Ecological manipulation
Sometimes nested.

Sometimes paired.

Replication is key!



Ecological Study (Sampling) Design

Observational Experimental

Transects Transects

| l \ J
| |
Often with . . _
randomized site - Ecological manipulation
selection.

Sometimes nested. | The most appropriate sampling design will depend on your
Sometimes paired. | Study system and research question. You should simulate data
Replication is key! | Pefore carrying out your study to test your analytical approach.
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Power Analysis for Statistical Inference

Null hypothesis is ...

Rejected

Not rejected

Type | and Type Il Error

True

Type | error
False positive
Probability = a

Correct decision
True negative
Probability =1-a

False

Correct decision

True positive
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Type Il error
False negative
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Probability of making a Type | error

Power Analysis tor
Statistical Inference o

* Type | error =false positive
* rejecting the null hypothesis when it’s actually true.

* the test result says you have coronavirus, but you
actually don’t.

Probability of making a Type Il error



Probability of making a Type | error

Power Analysis for
Statistical Inference

Null hypothesis (Ho)
distribution

* Type | error =false positive
* rejecting the null hypothesis when it’s actually true.

* the test result says you have coronavirus, but you
actually don’t.

Type | error rate

Probability of making a Type Il error

* Type Il error = false negative

(H,) distribution

* failing to conclude there was an effect when there
aCtua”y WaS Statistical power

1-B
* the test result says you don’t have coronavirus, but
you actually do.

Type Il error rate
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Power Analysis for Statistical Inference

Power analysis investigates the probability of detecting
an effect if it is actually there.

* Type Il error = false negative

(H,) distribution

* failing to conclude there was an effect when there
aCtua”y WaS Statistical power

1-B
* the test result says you don’t have coronavirus, but
you actually do.

Type Il error rate




Power Analysis in R

* Program ‘pwr’ for statistical models
e Simulation and evaluation for mechanistic models



Simulation and evaluation for mechanistic models

age-seroprevalence data for E. dupreanum Nipah virus
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Simulation and evaluation for mechanistic models

fitted model to age-seroprevalence data for E. dupreanum Nipah virus
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Simulation and evaluation for mechanistic models
Hyp 1: Lifelong Immunity
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Simulation and evaluation for mechanistic models
Hyp 1: Lifelong Immunity

- N
death s 1 h 1 1
deathst ST y \ Jdeaths deaths deaths
Ab trans- | Ab
births waning mission recove waning
— = S|7 ]| = N

Hyp 2: Waning Immunity

- N
death 4 $aeath t 1
deatnd] " | e S, foeetns deaths deaths
Ab

waning mission recove waning

waning immunity




Simulation and evaluation for mechanistic models

fitted model to age-seroprevalence data for E. dupreanum Nipah virus
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Simulation and evaluation for mechanistic models

fitted model to age-seroprevalence data for E. dupreanum Nipah virus
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Simulation and evaluation for mechanistic models

simulated data at full population size
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Simulation and evaluation for mechanistic models

simulated data after sub-sampling to 1000 bats
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Simulation and evaluation for mechanistic models

simulated data after sub-sampling to 1000 bats
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Would this plot look the same if we sub-sampled a second time?



Simulation and evaluation for mechanistic models

fitted lifelong immunity model (hyp1) to data subsample
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Simulation and evaluation for mechanistic models

fitted lifelong immunity model (hyp1) to data subsample
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Simulation and evaluation for mechanistic models

fitted waning immunity model (hyp2) to data subsample
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