
Writing For Loops, If-Else
Statements, and
Functions in R

• Institut Pasteur de
Madagascar

• December 2022

• E²M²: Ecological and
Epidemiological Modeling in
Madagascar

The Power of Programming

• So far, much of what we saw demonstrates how to use R like an
extremely smart calculator.
• We write commands and it executes them.

The Power of Programming

• So far, much of what we saw demonstrates how to use R like an
extremely smart calculator.

• The true power of the program comes from allowing R to query large
datasets and make decisions for you.

The Power of Programming

• So far, much of what we saw demonstrates how to use R like an
extremely smart calculator.
• The true power of the program comes from allowing R to query large

datasets and make decisions for you.
• Three key programming tools are helpful:

1. If-else statements
2. For-loops
3. Functions

The Power of Programming

• So far, much of we learned demonstrates how to use R like an
extremely smart calculator.
• The true power of the program comes from allowing R to query large

datasets and make decisions for you.
• Three key programming tools are helpful:

1. If-else and ifelse statements
2. For-loops
3. Functions

Allow you to control the flow of our programming and cause different things to
happen depending on the value of tests

For-loops

• “Looping”, “cycling”, “iterating” is nothing more than automating a
multi-step process by organizing sequences of actions or ‘batch’
processes and by grouping the parts that need to be repeated.
• For loops execute for a prescribed number of times, as controlled by a

counter or an index, incremented at each iteration cycle.

For-Loops

for (variable in vector)
{ do something }

for (i in 1:20) {
print(paste("I am student",i))
}

Tells the loop how many times to run

for (i in 1:20) {
print(paste("I am student",i))
}

Tells the loop how many times to run

for (i in 1:20) {
print(paste("I am student",i))
}

Function to be run i times

for (i in 1:20) {
print(paste("I am student",i))
}

The print command is very important.
Without it the functions will only run internal to the loop

If Statements

If condition is TRUE, then perform
some action; otherwise do not
perform that action.

if (condition is TRUE)

{ do something }

If-Else Statements

If condition is TRUE, then
perform some action;
otherwise do not perform that
action.

if (condition is TRUE)

{ do something }

else { do different thing }

If-Else Statements

If condition is TRUE, then perform some
action; otherwise do not perform that action.

if (condition is TRUE)
{ do something } else

{ do different thing }

IMPORTANT: else must be in
the same line as the closing
braces of the if statement.

Functions

• A function is a piece of code written to carry out a specified task;

• mean(x), sum(x),….rep(x,y)

• Lots of pre-written functions organized in multitude of packages.

• If you can not find a function in R to do what you need, you can write
your own function

Functions

• A function is a piece of code written to carry out a specified task;

• mean(x), sum(x),….rep(x,y)

• Lots of pre-written functions organized in multitude of packages.

• If you can not find a function in R to do what you need, you can write
your own function

Functions

• A function is a piece of code written to carry out a specified task;

• mean(x), sum(x),….rep(x,y)

• Lots of pre-written functions organized in multitude of packages.

• If you can not find a function in R to do what you need, you can write
your own function

Why write functions?

• Any time you find yourself wanting to do the same thing many times
• Editing data
• Repeating similar analyses on different variables
• Creating a similar graph from different variables
• Running simulations
• Lots of other reasons I’m sure…

Functions

function_name <- function(argument1, argument2) {
command

return(output)}

where the code in between the curly braces is the body of the function.

Functions

• Things to consider:
• Function allows you to define exactly what you want to do

• Name your User Defined Function.

• Make sure that the name that you choose for the function is not an R
reserved word. This means that you, for example, don’t want to pick the
name of an existing function for your own UDF.

• Start with a very simple version of what you want to accomplish and
build from there

• You want to make sure each little piece works before you invest the
time to create a complex thing:

•Remember: you can always try to run any
line of code you are confused about!

We want to simulate a coin toss

• We want to simulate a coin toss and find out the proportion of tails
that are recovered for n different toss trials.

coin<-function(n){
Tail<-rbinom(n,1,.5)
numTail<-sum(Tail)
propTail <- numTail/n
return(propTail)
}

coin<-function(n){
conduct n toss trials with a 50% prob. of getting tail

Tail<-rbinom(n,1,.5)
numTail<-sum(Tail)
propTail <- numTail/n
return(propTail)
}

coin<-function(n){
conduct n toss trials with a 50% prob. of getting tail

Tail<-rbinom(n,1,.5)
count number of Tails

numTail<-sum(Tail)
propTail <- numTail/n
return(propTail)
}

coin<-function(n){
conduct n toss trials with a 50% prob. of getting tail

Tail<-rbinom(n,1,.5)
count number of Tails

numTail<-sum(Tail)
divide number of Tails by number of trials

propTail <- numTail/n
return(propTail)
}

coin<-function(n){
conduct n toss trials with a 50% prob. of getting tail

Tail<-rbinom(n,1,.5)
count number of Tails

numTail<-sum(Tail)
divide number of Tails by number of trials

propTail <- numTail/n
return(propTail)
} return() determines what the product of the function is

coin<-function(n){
conduct n toss trials with a 50% prob. of getting tail

Tail<-rbinom(n,1,.5)
count number of Tails

numTail<-sum(Tail)
divide number of Tails by number of trials

propTail <- numTail/n
return(propTail)
} return() determines what the product of the function is

Help me add
flexibility to this
function by allowing
me to change the
probability of
getting tails!

Take home messages

• Start small and build up
•Work out the kinks bit by bit before investing too

much time into writing a big function

Take home messages

• Start small and build up
•Work out the kinks bit by bit before investing too

much time into writing a big function
• Things that can look very complex at first can be

broken down into small parts, which makes them less
threatening

Take home messages

• Start small and build up
•Work out the kinks bit by bit before investing too

much time into writing a big function
• Things that can look very complex at first can be

broken down into small parts, which makes them less
threatening
•Writing functions and simulations is not that hard, you

have all the tools already!

