The use of Generalized Linear Mixed Models for the study of dynamical systems

Andrés Garchitorena

Researcher, Institut de Recherche pour le Développement

Research Advisor, PIVOT Madagascar

E²M² Workshop Ranomafana, December 2022

- Understand alternatives to the use of mathematical models for the study of dynamical systems
- Remind some basic principles of linear regression and statistical models
- Introduce the use of generalized linear mixed models for the study of dynamical systems
- Provide an overview of the steps involved in developing a generalized linear mixed model (tutorial)

Why statistical models if my system is dynamic?

1. Univariate

Linear Models

SOME BASICS FIRST...

norm1

Lemur weight and determinants

Histogram of taille

.

taille

The goal is to minimize the difference between what we predict and what we observe

• Relation between 2 continuous variables

- Intercept (α)
 - Value of y when x is 0
- Regression coefficient β_1
 - Measures association between y and x
 - Amount by which y changes on average when x changes by one unit
- *Error* (ε)
 - Difference between the predicted values and observed values of y

Simple linear regression

$$\mathbf{y} = \alpha + \beta^* \mathbf{x} + \boldsymbol{\varepsilon}$$

The R function to fit a linear model is lm() which uses the form **fitted.model <- lm(formula, data=data.frame)**

Simple linear regression

.

Taille = 20 + 1.15 x Age (months) + Error

A process is generally the result of several others...

INTRODUCING MULTIVARIATE LINEAR MODELS

The effect of gender

The effect of gender

Taille = 15 + 1.15 x Age (months) + 15 x Sexe (Female) + Error

The effect of parasites

Green: low GI parasite burden Yellow: high GI parasite burden

The effect of parasites

Glparasites

The effect of parasites

Taille = 45 - 0.3 x Nb Parasites + Error

- Generalization of simple regression
- To describe the relationship between
 - The response variable, y
 - The explanatory variables, x = (x₁,x₂,...,x_n)
- The model: $y = \alpha + \beta_1 * x_1 + ... + \beta_n * x_n + \epsilon$ with $\epsilon \sim N(0, \sigma^2)$
- We generally select the model that best fits the data (best explains observed patterns) with the smallest number of variables

Unfortunately, not all things in life are normal...

INTRODUCING GENERALIZED LINEAR MODELS

Histogram of Glparasites

- Cannot be negative
- Discrete values
- The lower the values, the « less normal » they generally are.
- Examples:
 - Number of individuals of a species X
 - Number of people with a disease X

Glparasites

- Values either 1 or 0 (either happened or not happened)
- The outcome variable is the number of successes /failures
- Examples:
 - Presence of a species X
 - Presence of a disease X

- In this type of situations, general linear models are not appropriate because:
 - The range of Y is restricted (e.g. binary, count)
 - \odot The variance of Y depends on the mean
- **Generalized linear models** extend the linear model framework to address both of these issues by using a linear predictor and a link function

The R function to fit a general linear model is glm() which uses the form **fitted.model <- glm(formula, family="model family", data=data.frame)**

One generalization of multiple linear regression. Response, y, predictor variables x₁, x₂, The distribution of Y depends on the X's through a single linear function, the "linear predictor"

$$\nu = \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$$

A link function describes how the mean E(Y) = μ, depends on the linear predictor v.

$$\mu = m(\nu), \qquad \nu = m^{-1}(\mu) = l(\mu)$$

Generalized linear modeling

Generalized linear modeling

STEPS IN DEVELOPMENT OF STATISTICAL MODELS (TUTORIAL)

Database construction and descriptive analyses

.

- Distribution of the response variable
- Distribution of the explanatory variables

Database construction and descriptive analyses

.

- Quantify the stregth of the relationship between the response variable and each explanatory variable
- Test the significance of the relationship between the response variable and each explanatory variable

Glparasites

Multivariate analyses

• Quantify the relationship between the response variable and a set of explanatory variables

```
Model1 = lm(taille^age+sexe+Glparasites, data=mydata)
summary (m1)
                        Call:
                        lm(formula = taille \sim age + sexe + GIparasites, data = mydata)
                        Residuals:
                             Min
                                      1Q Median
                                                       3Q
                                                               Max
                        -16.9962 -2.6011 -0.1584
                                                   3.7331 12.0600
                        Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
                        (Intercept) 21.94145
                                             1.28143
                                                        17.12
                                                                <2e-16
                                    1.02365
                                               0.05584 18.33
                        age
                                                                <2e-16
                                                                      ***
                        sexeMale
                                   10.88561
                                            1.09295 9.96 <2e-16 ***
                        GIparasites -0.29930
                                               0.02652 -11.28
                                                                <2e-16
                                                                      ***
                        Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                        Residual standard error: 5.323 on 96 degrees of freedom
                        Multiple R-squared: 0.8653, Adjusted R-squared: 0.8611
                        F-statistic: 205.5 on 3 and 96 DF, p-value: < 2.2e-16
```

 Select the set of predictors that best explains the response variable (backwards, forward, stepwise)

drop1 (m1) add1 (m1) step (m1)

• Check that model assumptions have not been violated

Normality of residuals

• Check that model assumptions have not been violated

Homogeneity of residuals

fitted(m1)

INTRODUCTION TO GENERALIZED LINEAR MIXED MODELS

Assumption and limitation of glms

Generalized linear mixed models include both fixed effects and random effects in order to allow for:

- Repeated measures

Why use GLMMs?

- Temporal correlation
- Spatial correlation
- Heterogeneity
- Nested data

The R function to fit a generalized linear mixed model is glmer() which uses the form fitted.model <- glmer(formula, family="model family", data=data.frame) **Repeated measures**

Spatial correlation

.....

- The intercept is different for each individual/site
- Accounts for baseline differences in the response variable between individuals/sites

- The effect of a variable (b) is different for each individual/site
- Accounts for baseline differences in the relationship responseexplanatory variable between individuals/sites

NOW THAT WE CAN MODEL REPEATED OBSERVATIONS OVER TIME...

Introducing time-dependent trends

a) Linear trends (days, months, years)

Time = 1, 2, 3, 4, ..., N

Where N is the total number of observations for each individual or site (including NAs)

Introducing time-dependent trends

Evaluating abrupt and progressive changes over time

Immediate impact a)

- Impact = 0 before the event happened 1 after the event happened

Evaluating abrupt and progressive changes over time

a) Immediate impact

b) Progressive impact

The use of Generalized Linear Mixed Models for the study of dynamical systems

Andrés Garchitorena

Researcher, Institut de Recherche pour le Développement

Research Advisor, PIVOT Madagascar

E²M² Workshop Ranomafana, January 2019