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• Understand alternatives to the use of mathematical models for the 
study of dynamical systems

• Remind some basic principles of linear regression and statistical
models

• Introduce the use of generalized linear mixed models for the study of 
dynamical systems

• Provide an overview of the steps involved in developing a generalized
linear mixed model (tutorial)

1 Objectives of the lecture11



Why statistical models if my

system is dynamic?
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1 Example of utilization trends11



SOME BASICS FIRST…

1. Univariate
Linear Models



1 Variables and distributions11



1 Let’s work through a cute example11



1 Lemur weight and determinants11



1 Lemur weight and determinants11



1 Lemur weight and determinants11



1 Lemur weight and determinants11

The goal is to minimize the difference between what we predict and what we observe



• Relation between 2 continuous variables

• Intercept (a)
• Value of y when x is 0

• Regression coefficient b1
• Measures association between y and x
• Amount by which y changes on average when x changes by one unit

• Error (e)
• Difference between the predicted values and observed values of y 

y

x

Slope (b)

α

1 Simple linear regression11



Response variable = Systematic 
component

Residual 
component

Intercept and 
explanatory variables

- Null mean
- Independence
- Fixed variance
- Normality

+

The R function to fit a linear model is lm() which uses the form
fitted.model <- lm(formula, data=data.frame)

1 Simple linear regression11

y = a+ b*x + ε



Taille = 20 + 1.15 x Age (months) + Error

1 Simple linear regression11



A process is generally the result 

of several other
s…



INTRODUCING MULTIVARIATE 
LINEAR MODELS

1. Univariate
Linear Models

2. Multivariate
Linear Models



1 Lemur weight and determinants11



1 Lemur weight and determinants11

The effect of gender



1 Lemur weight and determinants11

The effect of gender

Taille = 15 + 1.15 x Age (months) + 15 x Sexe (Female) + Error



1 Lemur weight and determinants11

The effect of parasites Green: low GI parasite burden
Yellow: high GI parasite burden



1 Lemur weight and determinants11

The effect of parasites



Taille = 45 - 0.3 x Nb Parasites + Error

1 Lemur weight and determinants11

The effect of parasites



• Generalization of simple regression

• To describe the relationship between
• The response variable, y 
• The explanatory variables, x = (x1,x2,…,xn)

• The model: y = a+ b1*x1 +…+ bn*xn+ ε
with ε ~N(0,σ2)

• We generally select the model that best fits the data (best explains 
observed patterns) with the smallest number of variables

1 Multiple linear regression11



Unfortunately, not all things in 

life are normal…



INTRODUCING GENERALIZED 
LINEAR MODELS

1. Univariate
Linear Models

2. Multivariate
Linear Models

3. Generalized
Linear Models



• Cannot be negative

• Discrete values 

• The lower the values, the « less normal » 
they generally are.

• Examples: 

o Number of individuals of a species X

o Number of people with a disease X

Count data



• Values either 1 or 0 (either happened or 
not happened) 

• The outcome variable is the number of 
successes /failures

• Examples: 

o Presence of a species X

o Presence of a disease X

Binary data (events) 



� In this type of situations, general linear models are not appropriate 
because:
o The range of Y is restricted (e.g. binary, count) 
o The variance of Y depends on the mean 

� Generalized linear models extend the linear model framework to address 
both of these issues by using a linear predictor and a link function 

Limitations of linear models

The R function to fit a general linear model is glm() which uses the form
fitted.model <- glm(formula, family=“model family”, data=data.frame)



� One generalization of multiple linear regression. Response, y, predictor
variables x1, x2, …. The distribution of Y depends on the X’s through 
a single linear function, the “linear predictor”

� A link function describes how the mean E(Y) = µ, depends on the linear 
predictor v.

Generalized linear modeling



v

x

b

α

(log)

Most common families and links
• Gaussian: identity
• Poisson: log
• Binomial:  logit
• Negative binomial: log

Generalized linear modeling

x

Y= e (a + b x)
V = a + b x



0.0

0.2

0.4

0.6

0.8

1.0 v

x

b

α

P y x e
e

x

x( ) =
+

+

+

a b

a b1 (logit)

Most common families and links
• Gaussian: identity
• Poisson: log
• Binomial:  logit
• Negative binomial: log

Generalized linear modeling

x

y

V = a + b x



STEPS IN DEVELOPMENT OF
STATISTICAL MODELS (TUTORIAL)

1. Univariate
Linear Models

2. Multivariate
Linear Models

3. Generalized
Linear Models



• Distribution of the response variable

• Distribution of the explanatory variables

Database construction and descriptive analyses3

hist(mydata$var) hist(mydata$var) plot(mydata$var)



• Relationships between the variables

Database construction and descriptive analyses3

pairs(mydata)



• Quantify the stregth of the relationship between the response
variable and each explanatory variable

• Test the significance of the relationship between the response
variable and each explanatory variable

Univariate analyses3

Model1 = lm(taille~GIparasites, data=mydata)
summary (Model1)



• Quantify the relationship between the response variable and a set of 
explanatory variables

Multivariate analyses3

Model1 = lm(taille~age+sexe+GIparasites, data=mydata)
summary (m1)

• Select the set of predictors that best explains the response variable 
(backwards, forward, stepwise)

drop1 (m1) step (m1)add1 (m1)



• Check that model assumptions have not been violated

Model validation3

Normality of residuals



• Check that model assumptions have not been violated

Model validation3

Homogeneity of residuals



INTRODUCTION TO GENERALIZED 
LINEAR MIXED MODELS

1. Univariate
Linear Models

2. Multivariate
Linear Models

3. Generalized
Linear Models

4. Generalized Linear
Mixed Models



Assumption and limitation of glms

all observations are considered indepen
dent



ta
ill
e

age

What if…?



Generalized linear mixed models include both fixed effects and 
random effects in order to allow for:

- Repeated measures

- Temporal correlation

- Spatial correlation

- Heterogeneity

- Nested data 

Why use GLMMs?

yi = Xiβ + Zibi + εi

Fixed
Effects

Random
Effects

The R function to fit a generalized linear mixed model is glmer() which uses the form
fitted.model <- glmer(formula, family=“model family”, data=data.frame)
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Repeated measures



District

Cluster 1 Cluster 2 Cluster 3

HH 1 HH 2 HH 3 HH 5HH 4

Spatial correlation



Random intercept

• The intercept is different for each
individual/site

• Accounts for baseline differences
in the response variable between
individuals/sites 



Random slope

• The effect of a variable (b) is
different for each individual/site

• Accounts for baseline differences
in the relationship response-
explanatory variable between
individuals/sites 



NOW THAT WE CAN MODEL REPEATED 
OBSERVATIONS OVER TIME…

1. Univariate
Linear Models

2. Multivariate
Linear Models

3. Generalized
Linear Models

4. Generalized Linear
Mixed Models

5. Evaluating trends and 
effects over time



a) Linear trends (days, months, years)

Time = 1, 2, 3, 4, …, N

Where N is the total number of observations for 
each individual or site (including NAs)

y

time

y

time

Introducing time-dependent trends3



a) Linear trends

b) Seasonal trends

Season=sin(2*pi*(monthi-shift)/period)
Season=cos(2*pi*(monthi-shift)/period)

Introducing time-dependent trends3



a) Immediate impact

y

time

Event

Evaluating abrupt and progressive changes over time3

Impact = • 0 before the event happened
• 1 after the event happened



a) Immediate impact 

b) Progressive impact

y

time

Event

Evaluating abrupt and progressive changes over time3

Impact =
• 0 before the event happened
• 1, 2, 3, 4, …, N 
after the event happened



Back to the initial example3
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