E²M²: Ecological and Epidemiological Modeling in Madagascar

Data and Models

Centre ValBio Ranomafana National Park, Madagascar December 2022

Thanks to our sponsors!

Lecture contributions from:

- Tanjona Ramiadantsoa
- Steve Bellan

• To explain what we're doing here

- To explain what we're doing here
- To define "science"

- To explain what we're doing here
- To define "science"
- To define "data"

- To explain what we're doing here
- To define "science"
- To define "data"
- To define "models"

- To explain what we're doing here
- To define "science"
- To define "data"
- To define "models"
- To introduce many different types of models

- To explain what we're doing here
- To define "science"
- To define "data"
- To define "models"
- To introduce many different types of models
 - Statistical

- To explain what we're doing here
- To define "science"
- To define "data"
- To define "models"
- To introduce many different types of models
 - Statistical
 - Mathematical

- To explain what we're doing here
- To define "science"
- To define "data"
- To define "models"
- To introduce many different types of models
 - Statistical
 - Mathematical
- To introduce the "E" in E²M²

- To explain what we're doing here
- To define "science"
- To define "data"
- To define "models"
- To introduce many different types of models
 - Statistical
 - Mathematical
- To introduce the "E" in E^2M^2
 - Ecology

- To explain what we're doing here
- To define "science"
- To define "data"
- To define "models"
- To introduce many different types of models
 - Statistical
 - Mathematical
- To introduce the "E" in E²M²
 - Ecology
 - Epidemiology

Friday: R Bootcamp

- Intro to R Studio
- Exploring and Visualizing Data in R
- For-loops, Functions, and If-Else Statements

Saturday: Travel

Sunday: "Getting Started with the Basics"

- Data and Models
- Student introductions & presentations
- Linear regression & simple statistics
- Linear regression tutorial

Monday: "Using Models with Data"

- Model-Guided Study Design
- Study design tutorial
- Intro to Compartmental Models & Differential Equations
- Building mechanistic models in R
- Refining research questions for modeling
- Defining a model world

- Thursday: "Bells and Whistle"
 Introduction to Phylogenetic Modeling

 Tutorial

 Intoduction to Spatial Visualization and Plotting

 Tutorial

 Modeling Insights from the Metapopulation Game

 Tutorial

 Introduction to Network Modeling

 Tutorial
 - Research Snapshots

Wednesday: "Refining Your Work"

- Model Fitting in Practice the Basic Concept
- Epidemic Cards
- Model Fitting with Epidemic Cards
- Model Selection and Comparison
- Model Selection Tutorial
- Model Telephone

Tuesday: "Applying Simple Models"

- Dynamical Fever
- Introduction to Mixed Modeling
- Reading a Research Paper

• Programming

- Data
- Models
- Research Development

Friday: "Putting it All in Perspective"

- The Life Cycle of a Modeling Project
- C4C Student Presentations

Saturday: Travel

January: "Sharing Your Work"

• Final student presentations

What is science?

the systematic observation of natural events and conditions in order to discover facts about them and to formulate laws and principles based on these facts.

- Academic Press Dictionary of Science & Technology

Observations and Laws and Principles

Data and Models

Data and Models

Data

• What is data?

Data and Models

- What is data?
 - Backbone of science

What is science?

the systematic observation of natural events and conditions in order to discover facts about them and to formulate laws and principles

Data and Models

- What are data?
 - Evidence to support a claim

Data

•

What do we need to make these data?

Number of views for Justin Bieber's "Baby" video on Youtube

Data

Source: World Bank (accessed 2017)

What are data?

- A relationship between at least two variables
 - x: explanatory, control, driver, independent variable(s)
 - y: response, dependent variable(s)

What are data?

- A relationship between at least two variables
 - x: explanatory, control, driver, independent variable(s)
 - y: response, dependent variable(s)
- x and y should be clearly defined
 - with respect to the **question!**

What are data?

- A relationship between at least two variables
 - x: explanatory, control, driver, independent variable(s)
 - y: response, dependent variable(s)
- x and y should be clearly defined
 - with respect to the **question!**
- Backbone of science
- Evidence to support a claim

Data provide evidence to support a claim.

CLAIM: The population size of Madagascar has increased throughout the past 50 years

Source: World Bank (accessed 2017)

Data: Sources of x and y

Observational

Experimental

Simulated

Data

Empirical data

Numerical

Categorical

Data: Types

Numerical

Categorical

- A variable is numerical when you can transform it with mathematical operation
- Examples?

Data: Types

Categorical

Data

- A variable is numerical when you can transform it with mathematical operation
- Examples:
- Integer, real number, multidimensional number

Data: Types

- A variable is numerical when you can transform it with mathematical operation
- Examples:
- Integer, real number, multidimensional number

Categorical

• A variable is categorical when it is not numerical but a categorical can be numerical? Data

• Examples?

Data: Types

- A variable is numerical when you can transform it with mathematical operation
- Examples:
- Integer, real number, multidimensional number

Categorical

- A variable is categorical when it is not numerical but a categorical can be numerical?
- Examples:
- Colors, (blood) types, species name

Data

- Data acquisition
 - Impossible, example?

- Data acquisition
 - Impossible, example?
 - Theoretically possible but practically unfeasible, examples?

- Data acquisition
 - Impossible, example?
 - Theoretically possible but practically unfeasible, examples?
- Data quality and quantity
 - In practice there is always a trade-off

- Data acquisition
 - Impossible, example?
 - Theoretically possible but practically unfeasible, examples?
- Data quality and quantity
 - In practice there is always a trade-off
 - Example: monetary cost, human effort -> power analysis, sampling design etc.

- Data acquisition
 - Impossible, example?
 - Theoretically possible but practically unfeasible, examples?
- Data quality and quantity
 - In practice there is always a trade-off
 - Example: monetary cost, human effort -> power analysis, sampling design etc.
- Reproducibility

- Data acquisition
 - Impossible, example?
 - Theoretically possible but practically unfeasible, examples?
- Data quality and quantity
 - In practice there is always a trade-off
 - Example: monetary cost, human effort -> power analysis, sampling design etc.
- Reproducibility
- Measurement errors

- Data acquisition
 - Impossible, example?
 - Theoretically possible but practically unfeasible, examples?
- Data quality and quantity
 - In practice there is always a trade-off
 - Example: monetary cost, human effort -> power analysis, sampling design etc.
- Reproducibility
- Measurement errors
 - Examples?

Data and **Models**

Data and Models

• What is a model?

What is science?

the systematic observation of natural events and conditions in order to discover facts about them and to formulate laws and principles

Laws and Principles

- A theory = a declaration to explain a phenomenon
 - Logical and falsifiable
- A model = an abstract representation of a phenomenon
- A hypothesis = a testable declaration that is derived from a theory

Models

• When you make a model, you include the

elements that you feel are most important to explain a phenomenon.

• When you make a model, you include the

> elements that you feel are most important to explain a phenomenon.

 Generally, we try to make models that can reproduce real-world data

• When you make a model, you include the

elements that you feel are most important to explain a phenomenon.

- Generally, we try to make models that can reproduce real-world data
- In E²M², we distinguish between statistical and mechanistic models

Statistical vs. Mathematical Model

The choice depends on the research question!

Statistical Models

- Goal: To rigorously assess the strength of relationship between x and y
 - Find a significant relationship using a p-value as a measure of relationship strength
 - Statistical models can demonstrate correlations.

Statistical Models

- Goal: To rigorously assess the strength of relationship between x and y (describe patterns)
 - Find a significant relationship using a p-value as a measure of relationship strength
 - Statistical models can demonstrate correlations.
- Steps:
 - 1. Formulate a research question
 - 2. Formulate a hypothesis
 - 3. Develop a model to demonstrate your hypothesis.
 - 4. Collect data (required!!!)
 - 5. Evaluate hypothesis with appropriate statistical tools
 - t-test, Chi-square, ANOVA
 - Ordination (PCA)
 - Regression (LM, GLM, GLMM, GAM)

1. Example Question: What is the trajectory Malagasy population size through time?

Source: World Bank

Models

1. Example Question: What is the trajectory of Malagasy population size through time?

2. Hypothesis: Malagasy population size increases with time

- 1. Example Question: What is the trajectory of Malagasy population size through time?
- 2. Hypothesis: Malagasy population size increases with time
- 3. Statistical Model: y = mx + bLinear Regression

1. Example Question: What is the trajectory of Malagasy population size through time?

2. Hypothesis: Malagasy population size increases with time

3. Statistical Model: y = mx + bLinear Regression

Source: World Bank

Vlode

1. Example Question: What is the trajectory of Malagasy population size through time?

2. Hypothesis: Malagasy population size increases with time

3. Statistical Model: y = mx + b

5. Evaluation

m = .372 million p = .003

What can we conclude from this fitted model?

Source: World Bank

20 $y = e^{mx+b}$ **Exponential Regression**

Exponential Regression

 $R^2 = .99$

2010

2000

and re-evaluate: superior sup m = 0.029 mil. *p* < .001 5 1970 1980 1990

25

7. Adapt your model

What can we conclude from this fitted model?

Source: World Bank

Statistical Models: Beware!

- Statistical models and tests are based on specific assumptions
 - data normally distributed
 - y and y independent
 - etc.

Statistical Models: Beware!

- Statistical models and tests are based on specific assumptions
 - data normally distributed
 - y and y independent
 - etc.
- Assessing a model means you need to make sure the assumptions are not violated.

Statistical Models: Beware!

- Statistical models and tests are based on specific assumptions
 - data normally distributed
 - y and y independent
 - etc.
- Assessing a model means you need to make sure the assumptions are not violated.
- There are so many statistical models...

Statistical vs. Mathematical Model

The choice depends on the research question!

Mechanistic Models

- Goal: To demonstrate the processes that underlie a relationship between x and y
 - Find a significant relationship using a p-value as a measure of relationship strength
 - Mechanistic models can demonstrate causation.
- Steps:
 - 1. Formulate a research question
 - 2. Formulate a hypothesis
 - 3. Develop a model to demonstrate your hypothesis.
 - 4. Collect data (for certain questions)
 - 5. Evaluate the extent to which your model-simulated data matches that from the real world.

1. Example Question: **How** does Malagasy population size change with time?

2. Hypothesis: Malagasy population size increases because people are having children.

Can you think of an alternative hypothesis?

Source: World Bank

1. Example Question: How does Malagasy population size change with time?

25

20

4. Data:

2. Hypothesis: Malagasy population size increases because people are having children.

3. Mechanistic Model:

Source: World Bank

2010

1. Example Question: How does Malagasy population size change with time?

2. Hypothesis: Malagasy population size increases because people are having children.

3. Mechanistic Model:

5. Evaluation:

birth

r = .349/person/yr

Population

death

What can we conclude from this fitted model?

• Parameters used in the mechanistic models sometimes are not measurable!

- Parameters used in the mechanistic models sometimes are not measurable!
- Simulations can be computationally intensive

- Parameters used in the mechanistic models sometimes are not measurable!
- Simulations can be computationally intensive
- Advances in computational power often inspire development of more complex models which are not necessarily better

- Parameters used in the mechanistic models sometimes are not measurable!
- Simulations can be computationally intensive
- Advances in computational power often inspire development of more complex models which are not necessarily better

"All models are wrong but some are useful..." -George Box

- Parameters used in the mechanistic models sometimes are not measurable!
- Simulations can be computationally intensive
- Advances in computational power often inspire development of more complex models which are not necessarily better

"All models are wrong but some are useful..." -George Box We use models to both **predict** and **explain**.

It is ideal when statistical and mechanistic models meet:

A Tool for E^2M^2

- Computer power keeps increasing
- Language/software
 - Fortran, C, C++
 - Julia, Java, Python
 - Matlab, Maple, Mathematica,
 - SAS, SPSS, Stata
- Specific programs
 - Vortex, RAMAS, NetLogo for IBM
 - NicheMapper for physiology, iLand for forest dynamics
 - MaxEnt for species distribution modeling
 - Zonation for reserve selection etc...
- The compromise: R---very powerful for
 - Visualization
 - Data formatting and sorting
 - Statistical analyses
 - Simulation (mechanistic model)

Goals for this lecture

- To explain what we're doing here
- To define "science"
- To define "data"
- To define "models"
- To introduce many different types of models
 - Statistical
 - Mathematical
- To introduce the "E" in E²M²
 - Ecology
 - Epidemiology

Goals for this lecture

- To explain what we're doing here
- To define "science"
- To define "data"
- To define "models"
- To introduce many different types of models
 - Statistical
 - Mathematical
- To introduce the "E" in E^2M^2
 - Ecology
 - Epidemiology

What is Epidemiology?

- "the study of what is on the people"
 - coined in 1802 to describe diseases in the Spanish population
- Emphasis on the study and analysis of the distribution and determinants of health and disease ("risk factors")

1. Sickness caused by an imbalance in the four humors (Hippocrates)

- 1. Sickness caused by an imbalance in the four humors (Hippocrates)
- 2. Miasmatic theory of disease (1500s)
 - Sickness results from emanations of 'bad air'

- 1. Sickness caused by an imbalance in the four humors (Hippocrates)
- 2. Miasmatic theory of disease (1500s)
 - Sickness results from emanations of 'bad air'
- 3. Germ theory of disease
 - Leeuwenhoek's microscope (1675)
 - Koch's postulates (1890)

- 1. Sickness caused by an imbalance in the four humors (Hippocrates)
- 2. Miasmatic theory of disease (1500s)
 - Sickness results from emanations of 'bad air'
- 3. Germ theory of disease
 - Leeuwenhoek's microscope (1675)
 - Koch's postulates (1890)
- 4. Classical epidemiology
 - John Snow and London cholera (1854)

- 1. Sickness caused by an imbalance in the four humors (Hippocrates)
- 2. Miasmatic theory of disease (1500s)
 - Sickness results from emanations of 'bad air'
- 3. Germ theory of disease
 - Leeuwenhoek's microscope (1675)
 - Koch's postulates (1890)
- 4. Classical epidemiology
 - John Snow and London cholera (1854)
- 5. Mathematical epidemiology
 - Kermack and McKendrik (1927)

What is Ecology?

- The study of the interactions of organisms and their environment
 - Coined in 1866 by German scientist Ernst Haeckel
 - Nile crocodiles opening mouths for sandpipers (Herodotus)
- Emphasis on explaining dynamical processes in nature

- 1. Origins in plant biology and succession
 - Clements and Gleason (1910s-20s)

- 1. Origins in plant biology and succession
 - Clements and Gleason (1910s-20s)
- 2. Food Chains
 - Charles Elton (1920s)

- 1. Origins in plant biology and succession
 - Clements and Gleason (1910s-20s)
- 2. Food Chains
 - Charles Elton (1920s)
- 3. Predator-Prey Dynamics
 - Lotka-Voltera (1920s)

- 1. Origins in plant biology and succession
 - Clements and Gleason (1910s-20s)
- 2. Food Chains
 - Charles Elton (1920s)
- 3. Predator-Prey Dynamics
 - Lotka-Voltera (1920s)
- 4. Mathematical Ecology
 - Robert MacArthur (1950s)
 - Island biogeography

- 1. Origins in plant biology and succession
 - Clements and Gleason (1910s-20s)
- 2. Food Chains
 - Charles Elton (1920s)
- 3. Predator-Prey Dynamics
 - Lotka-Voltera (1920s)
- 4. Mathematical Ecology
 - Robert MacArthur (1950s)
 - Island biogeography
- 5. Disease Ecology
 - Anderson and May (1980s)
 - Island biogeography

Friday: R Bootcamp

- Intro to R Studio
- Exploring and Visualizing Data in R
- For-loops, Functions, and If-Else Statements

Saturday: Travel

Sunday: "Getting Started with the Basics"

- Data and Models
- Student introductions & presentations
- Linear regression & simple statistics
- Linear regression tutorial

Monday: "Using Models with Data"

- Model-Guided Study Design
- Study design tutorial
- Intro to Compartmental Models & Differential Equations
- Building mechanistic models in R
- Refining research questions for modeling
- Defining a model world

- Thursday: "Bells and Whistle"
 Introduction to Phylogenetic Modeling

 Tutorial

 Intoduction to Spatial Visualization and Plotting

 Tutorial

 Modeling Insights from the Metapopulation Game

 Tutorial

 Introduction to Network Modeling

 Tutorial
 - Research Snapshots

Wednesday: "Refining Your Work"

- Model Fitting in Practice the Basic Concept
- Epidemic Cards
- Model Fitting with Epidemic Cards
- Model Selection and Comparison
- Model Selection Tutorial
- Model Telephone

Tuesday: "Applying Simple Models"

- Dynamical Fever
- Introduction to Mixed Modeling
- Reading a Research Paper

• Programming

- Data
- Models
- Research Development

Friday: "Putting it All in Perspective"

- The Life Cycle of a Modeling Project
- C4C Student Presentations

Saturday: Travel

January: "Sharing Your Work"

• Final student presentations

Misaotra!

CI3D International Clinics on Infectious Disease, Dynamics, & Data

MMED: Clinic on the Meaningful Modeling of Epidemiological Data

May-June 2023, Cape Town, South Africa DAIDD: Clinic on Dynamical Approaches to Infectious Disease Data

December 2023, Virtual

South African Center for Epidemiological Modeling and Analysis (SACEMA), Director Dr. Juliet Pulliam

University of Stellenbosch

www.ici3d.org