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Summary

1. Host social structure is fundamental to how infections spread and persist, and so the statistical modelling of

static and dynamic social networks provides an invaluable tool to parameterise realistic epidemiological models.

2. We present a practical guide to the application of network modelling frameworks for hypothesis testing

related to social interactions and epidemiology, illustrating some approaches with worked examples using data

from a population of wild European badgersMeles meles naturally infected with bovine tuberculosis.

3. Different empirical network datasets generate particular statistical issues related to non-independence and

sampling constraints. We therefore discuss the strengths and weaknesses of modelling approaches for different

types of network data and for answering different questions relating to disease transmission.

4. We argue that statistical modelling frameworks designed specifically for network analysis offer great potential

in directly relating network structure to infection. They have the potential to be powerful tools in analysing

empirical contact data used in epidemiological studies, but remain untested for use in networks of spatio-tem-

poral associations.

5. As a result, we argue that developments in the statistical analysis of empirical contact data are critical given

the ready availability of dynamic network data from bio-logging studies. Furthermore, we encourage improved

integration of statistical network approaches into epidemiological research to facilitate the generation of novel

modelling frameworks and help extend our understanding of disease transmission in natural populations.

Key-words: contact network, epidemiology, exponential random graph model, network-based

diffusion analysis, relational event model, stochastic actor-oriented model, temporal network

autocorrelationmodel

Introduction

Direct contact is critical to the transmission of many of the

most important infectious diseases and so an understanding of

contact networks is integral to the epidemiology of many para-

sites and pathogens (Keeling & Eames 2005; Read, Eames &

Edmunds 2008; Danon et al. 2011; Craft 2015). Populations

are not completely mixed and significant population structure

arises from spatial (Webb, Keeling & Boots 2007a,b) and

social interactions. A growing number of empirical studies in

humans (Rohani, Zhong & King 2010; Stehl�e et al. 2011;

Eames et al. 2012) and non-human animals (reviewed in Craft

2015; White, Forester & Craft 2017) have found important

effects of social network structure on epidemiology, both at an

individual and a population level. As a result, many epidemio-

logical models now incorporate some concept of

non-random social structure that has important consequences

for understanding the spread of infections (Keeling & Eames

2005; Lloyd-Smith et al. 2005; Craft 2015).

It may also be important to consider networks as dynamic,

rather than static, structures, with changes affecting transmis-

sion over longer time-scales, particularly in endemic diseases

(Funk, Salath�e & Jansen 2010; Ezenwa et al. 2016; Silk et al.

2017). Not only will the temporal structure of interactions have

a direct influence on transmission opportunities but social

behaviour may also change in response to infection, including

both the behaviour of the infected or diseased individual and

the response of other individuals towards it (Bansal et al. 2010;

Croft et al. 2011a). Furthermore, these changes in behaviour

have been shown to alter contact network structure, with

implications for transmission (Tunc & Shaw 2014; Lopes,

Block & K€onig 2016). Therefore, accounting for the co-

dynamics of network structure and infection is key to improv-

ing our understanding of disease spread and control in many

systems (fig. 1; Bansal et al. 2010;Wang et al. 2010).
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An increasing number of theoretical studies have modelled

disease on dynamic networks (e.g. Eames et al. 2012; Tunc &

Shaw 2014); however, there has been relatively little use of

empirical data to explore this topic (but see Rohani, Zhong &

King 2010; Reynolds et al. 2015; Lopes, Block &K€onig 2016).

Using empirical data to test hypotheses about the relationship

between sociality and disease (e.g. Drewe 2010; Weber et al.

2013) will substantially advance our understanding of the

dynamics of infection transmission, and using the outputs of

statistical models could help improve the parameterisation of

predictive, analytical epidemiological models (Rohani, Zhong

& King 2010; Hamede et al. 2012; Reynolds et al. 2015). Nev-

ertheless, there are unique problems associated with applying

conventional statistical modelling approaches to network

datasets (Croft et al. 2011b; Farine & Whitehead 2015). First,

and perhaps most importantly, social networks recognise the

influence of community members on each other, causing non-

independence that must be accounted for statistically. Second,

social networks are rarely described completely. The impact of

sampling process on network parameters should be accounted

for in statistical models. This is a particular problem if there is

variation among individuals in the completeness of sampling.

While this can be an issue for interaction-based networks (here

defined as networks constructed from biologically relevant

interactions), it is especially problematic in association-based

networks (here defined as networks constructed by connecting

individuals that have shared particular groups or spatio-tem-

poral colocations rather than directly to each other), where the

extent of sampling is harder to directly assess.

A range of modelling approaches (Table 1), developed

within the field of social network analysis, could be applied to

study infection in contact networks. These are split broadly

into models that continue to use individual traits as a depen-

dent variable while accounting for network structure, and

models that use network topology as a dependent variable.

The latter could be particularly valuable by directly relating

network structure to infection and transmission. Several of

these approaches model networks dynamically and offer great

potential to improve our understanding of the dynamics of

social behaviour and disease. Here we outline these statistical

network approaches and provide a guide for how they can best

be applied to test a variety of hypotheses related to infection in

different types of network. For a selection of modelling frame-

works, we use example data from a population of European

badgersMeles meles naturally infected with bovine tuberculo-

sis (bTB), to illustrate how the approaches can be applied.

Models for static networks

GENERAL AND GENERALISED LINEAR MODELS AND

NETWORK AUTOCORRELATION MODELS

Traditional statistical modelling frameworks offer an appealing

solution to understanding how infection status and social posi-

tion covary with other individual traits. In particular, the use of

generalised linear models (GLMs) and generalised linear mixed

models (GLMMs) can help study the relationship between

social network position and disease state in the context of other

predictor traits (e.g. sex, age, physiological condition), either

controlling for these traits or considering interactions with

them. However, the non-independence of nodes and edges

within a network complicates the use of GLMs and GLMMs

(Croft et al. 2011b), which assume statistical independence of

residuals. Also, association-based networks (especially frequent

for animal networks) can lead to further biases introduced by

the method of network construction (see Farine & Whitehead

2015 for a simulated example of this).

One approach to adapt these modelling techniques appro-

priately to network data is to use permutation approaches that

rely on randomisations of the network or original datastream

(see Croft et al. 2011b; Farine & Whitehead 2015). A key dif-

ference here emerges between interaction networks and associ-

ation-based networks. The latter requires permutation of the

original datastream, due to additional sampling biases (Farine

& Whitehead 2015). For these types of networks, other key

considerations in implementing data permutations are likely to

be the size of social groups, spatio-temporal constraints on

interactions, differences in detectability of particular types of

individuals and differences in the probabilities of interactions

within, vs. outside, social groups (Croft et al. 2011b). While

biases generated by incomplete sampling can still occur in

interaction-based networks, there is greater potential to con-

trol this within amodelling framework. For example, if incom-

plete sampling results from differences in the length of time

each individual is observed then this can be accounted for

within anymodel used.

The R package asnipe (Farine 2013) offers a range of algo-

rithms that shuffle association-based data to randomise such

networks. However, it may be most appropriate to design sys-

tem-specific randomisations. One problem worth highlighting

is that using a permutation-based approach to test hypotheses

creates confidence intervals around the null hypothesis rather

than the estimated parameter. The development of approaches

that generate uncertainty around observed network data

would be highly beneficial in this regard. One example of this

idea is provided by Farine & Strandburg-Peshkin (2015), who

created probability distributions of edge weights using Baye-

sian inference. If GLM or GLMM analyses are completed

within a Bayesian framework then this sort of uncertainty can

be incorporated into the final analysis.

An alternative approach that can be used for interaction- or

contact-based networks is to incorporate network autocorrela-

tion into the model within a GLM or GLMM framework to

address the issue of covariance driven by network structure.

This can be achieved using the package tnam incorporated

within the xergm suite of packages (Leifeld, Cranmer & Des-

marais 2016), or the function lnam() in the package sna

(Butts 2014) in R. The former is discussed here as it has more

comprehensive provisions for dependency structures and can

incorporate non-Gaussian error distributions. Models con-

structed using tnam() offer a variety of user-defined depen-

dency terms that control for the expectation that individualsmay

influence other individuals they interact with within a network

(see https://cran.r-project.org/web/packages/tnam/tnam.pdf).
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For example, the weightlag() or netlag() terms can

incorporate autocovariance related to network distance or the

attribsim() can incorporate autocovariance related to

shared attribute values such as group membership. These

functions can incorporate additional arguments to make

dependency functions more complex. For example, the

netlag() term can include a number of network steps over

which autocovariance may be expected and a mathematical

description of the decay. A potential disadvantage here is that

dependency structures are defined by the user, and it is neces-

sary for them to argue that the dependencies incorporated are

appropriate and sufficient for the data in question (there is no

goodness-of-fit test that allows this to be tested within the

model). As well as incorporating these autocorrelation terms,

network autocorrelation models (NAMs) can fit effects of

nodal covariates that are either individual-level network met-

rics (e.g. centrality metrics, clustering coefficient) or exogenous

to the network (e.g. sex, age etc.), and the interactions between

them (see https://cran.r-project.org/web/packages/tnam/tnam.

pdf). There are some potential issues with negatively biased

parameter estimates for netlag() terms that should be

considered when interpreting autocovariance terms in these

models (Mizruchi & Neuman 2008; Neuman & Mizruchi

2010), although these are typically only problematic in high-

density networks.

Network autocorrelationmodel for bTB infection in badgers

We provide an example of a NAM using our badger data in

the supplementary material, in which we model bTB infection

status as a function of sex, age and flow centrality while

accounting for autocovariance among neighbouring individu-

als in the network. The results are presented in Table S1, Sup-

porting Information. This modelling approach finds a positive

effect of between-group flow centrality on the probability of

bTB infection, as expected from the results of Weber et al.

(2013). We also found a strong positive correlation between

within-group eigenvector centrality and bTB infection, which

is of interest as this was not ametric considered byWeber et al.

(2013). The model also revealed a weak effect of increasing

within-group degree on the probability of infection but we

would encourage a tentative interpretation of this given the

marginal effect and as no attempt has beenmade to control for

the duration that individuals were monitored in our example

analysis. These effects of centrality occur independently of dif-

ferences associated with age class (adults being more likely to

be infected than yearlings) and sex (males being more likely to

be infected than females). Individuals were also less likely to be

infected if their interactions were biased towards infected, not

uninfected, individuals (the weightlag() term). Two phe-

nomena are likely to contribute to this seemingly counter-intui-

tive finding. First, test positive individuals were considered to

be infected (test positive by serology or interferon gamma

release assay; see Weber et al. 2013) rather than necessarily

infectious (test positive by bacterial culture), thus reducing the

expectation of positive network covariance in infection. Sec-

ond, infected individuals were distributed evenly among theT
ab
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badger social groups in the original study, which focussed on a

subsample of the wider population with high bTB incidence

(fig. 1 inWeber et al. 2013).

PARTIAL MATRIX REGRESSIONS USING QUADRATIC

ASSIGNMENT PROCEDURES

Multiple regression quadratic assignment procedures

(MRQAP) facilitate multivariate regressions between matrices

with complex dependencies by using permutation-based esti-

mates of statistical significance (Martin 1999; Dekker, Krack-

hardt & Snijders 2007; Cranmer et al. 2016). Therefore, they

offer great utility as a tool to explain social network structure

using a set of other dyadic relationships. For an ecologist, these

are most likely to represent relatedness, some measure of spa-

tial distance, or potentially some measure of difference in indi-

vidual attributes (e.g. infection status). MRQAP is an

accessible method already in use by ecologists. Its direct appli-

cation to hypotheses related to infection is somewhat limited

because it only models dyadic correlations; however, there are

some situations where it may be useful. For example, Van-

derWaal et al. (2014) used MRQAP to compare social net-

works and transmission networks in giraffes Giraffa

camelopardalis while controlling for a number of other vari-

ables such as spatial overlap. They showed that social network

structure better explained transmission network structure than

did networks of spatial overlap.

Multiple options are available for calculating MRQAP

regressions for network data. Two more familiar options for

ecologists are the netlm() function in R package sna (Butts

2014), or the mrqap.dsp() and mrqap.custom.null()

functions in asnipe (Farine 2013) that enable MRQAP to be

used alongside randomisation-based approaches for networks

of associations.

EXPONENTIAL RANDOM GRAPH MODELS

Exponential random graph models (ERGMs) form a class of

statistical models specific to network analysis. They are edge-

based models that model the probability (Robins et al. 2007;

Lusher, Koskinen & Robins 2013) or weight (Desmarais &

Cranmer 2012; Krivitsky 2012; Wilson et al. 2017) of each

edge as a function of network structure and the characteristics

of individuals (nodes) within the network. Local structural

configurations can be used alongside nodal or edge covariates

to model the pattern of edges observed (see Table 2). ERGMs

fit parameters that produce a distribution of networks centred

on the observed network (for more details see Lusher, Koski-

nen & Robins 2013). Goodness-of-fit of ERGMs can then be

assessed by comparing (non-fitted) metrics from the simulated

networks with those from the observed network (Lusher, Kos-

kinen & Robins 2013). The fitting of ERGMs can be compli-

cated by the fact that many parameter combinations can result

in model degeneracy (producing model fits that are either very

dense or sparse networks); however, this does reduce the likeli-

hood of misspecifiedmodels being used. ERGMs are best used

with contact or interaction-based data because association- or

group-based methods of network construction include

Table 2. Details of the type ofmodel term,what type of network to use it in and guidance on how andwhen to use it for a selection of standard terms

to consider when using ERGMs andTERGMs

ERGMterm Network type Term type Use to. . .

edges

density

Binary Structural Similar to an intercept in aGLM– gives the probability of edges in the network relative
to a randomnetwork.Density is equivalent to edges divided by n(n�1)/2 (where n is the

number of nodes in the network)

nonzero Weighted Structural Zero-inflation term inweighted networks (accounts for the fact thatmost networks are

sparse and therefore distribution of edge weights is zero-inflated)

sum Weighted Structural Similar to the intercept in aGLM forweighted networks

kstar(x:y) Binary Structural A statistic for each kstar between x and y. kstar(1) is equivalent to edges

triangle

localtriangle(x)

Binary Structural A statistic for the number of triangles in the network (i.e. ameasuring of clustering/

transitivity). localtriangle(x) calculates only triangles between neighbours which are

given using an indicatormatrix x.

transitiveweights()

cyclicalweights()

Weighted Structural Both of these terms can be used to calculate triangles inweighted networks taking into

account theweights of edges

nodefactor(x) Both Node-based The effect of a categorical nodal attribute on the probability/weight of edges

nodecov(x) Both Node-based The effect of a continuous nodal attribute on the probability/weight of edges

nodematch(x) Both Node-based The probability/weight of edges between two individuals of the same vs. different values

of a categorical nodal attribute. The argument diff=TRUE can provide separate

estimates for each level of the factor

absdiff(x)

absdiffcat(x)

Both Node-based The effect of the difference in values of a nodal attribute between nodes on the

probability/weight of an edge formed between them

edgecov(x)

dyadcov(x)

Both Dyad-based The effect of a dyadic covariate (e.g. relatedness) on the probability/weight of edges

formed. Using dyadcov(x) applies directed covariates when the network itself is directed

memory(type=””) Both Temporal The stability of edges over time. Additional arguments in type can be used to test different

memory effects e.g. all potential edges (‘stability’) or only complete edges

(‘autoregression’)

timecov(x,

transform=function(t))
Both Temporal Trends in edge formation over time (nature of trend given by transform argument). Can

additionally include a dyadic covariate x to create an interaction effect
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uncertainty regarding the true nature of social associations and

introduce sampling biases that need to be controlled for (Croft

et al. 2011b). It may be possible to utilise two-mode ERGMs

(modelling networks in which edges can only connect between

two sets of nodes) for some association-based network data,

especially when the links to specific locations are of interest

(i.e. modelling what drives any individual’s connections to par-

ticular locations or groups rather than to each other). In gen-

eral, however, a restriction to interaction-based networks will

not be a major issue in epidemiological research, which typi-

cally employs interaction-based networks.

An advantage of ERGMs is the ability to simulate networks

based on the parameters for the structural features, and node

and edge characteristics included in the observed network with

an appropriately fitted model. ERGMs can be a powerful tool

for parameterising uncertainty in any epidemiological models

constructed (see Welch, Bansal & Hunter 2011), and this is

likely to be especially useful in understanding disease epidemiol-

ogy, as small differences in network structure have the potential

to substantially alter transmission dynamics. This is especially

true for studies that use simulation-modelling of the spread of

disease across a network (see Reynolds et al. 2015). ERGMs

also facilitate modelling of social contacts or interactions in

response to individual traits, or the properties of dyads (other

relationships between individuals such as relatedness). Individ-

ual traits (e.g. sex, age, disease state) can be used to explain

both the tendency to form connections, and the likelihood of

interacting with similar individuals (assortativity). This offers

great potential to test hypotheses about the relationship

between individual traits, including disease state, and network

topology. For example, infected individuals having more inter-

actions than uninfected individuals or tending to interact more

frequently with susceptible individuals will increase risk of

exposure at a population level. By contrast, assortment among

infected individuals would signify that they associate dispropor-

tionately and therefore that infection may be socially, and per-

haps spatially, restricted in the population. The same argument

applies to traits that make individuals more susceptible to

infection. Using relatedness as a dyadic variable is a good illus-

tration: related individuals may be more likely to share a

genetic susceptibility to some pathogens, so the relationship

between the genetic structure and social structure of the

population could influence the spatio-temporal distribution of

infection.

ERGMs can be constructed using the packages ergm

(Hunter et al. 2008; Handcock et al. 2015), ergm.count

(Krivitsky 2015) and GERGM (Denny et al. 2016) in R. The

package ergm.count extends ERGMs to Poisson and geo-

metrically distributed edge weights and the package GERGM

generalises ERGMs to all types of weighted network. The lat-

ter is a new tool and its use in the type of networks used for

epidemiological research is untested. We provide the most rel-

evant terms used in ergm and ergm.count in Table 2, and

a full list of possible terms is included in the help pages for

these packages. The range of possible terms is more limited

for GERGM. The most important terms to include depend on

the type of network being used, any structure implicit to it,

and the questions being asked (Table 2). R code for an exam-

ple ERGM is provided in the supplementary material. The

simulate() function in these packages can then be used to

generate new networks based on the modelled parameters to

assess goodness-of-fit or for use in further analysis or net-

work models. We demonstrate its use in the supplementary

material.

ERGM to relate bTB infection and network topology in

badgers

We provide an example of ERGM in the supplementary infor-

mation that finds no significant relationship between bTB

infection and number of contacts in a binary network

(although the weak positive effect might be stronger if contact

strengths were considered), and reveals that males tended to

have more contacts than females (Table S2). By using an

ERGM, we were able to control for the structure imposed by

social groups, and for variation in group size and the number

of individuals collared within groups, in the model structure.

One might also control for other constraints in the dataset

using nodal or dyadic covariates, for example detection biases

caused by variation in signal strength in proximity loggers

(Drewe et al. 2012).We also used our ERGM to simulate bad-

ger networks with the same parameters fitted in themodel, and

show that they are broadly similar to the observed network,

albeit not fully capturing the observed network structure

(Fig. S1).

LATENT SPACE NETWORK MODELS

Latent space models offer an alternative method to ERGMs

for the modelling of relational data. They effectively act as

GLMs for edge values while controlling for network depen-

dence by placing nodes in k-dimensional space according to

their social network distance (Cranmer et al. 2016). Covari-

ates can then include relational/dyadic properties (such as

relatedness, or differences in a particular attribute) or an

attribute of either node represented as a matrix with the

same dimensions as the network. This means that the range

of nodal and dyadic covariates is very similar to those for

ERGMs (Cranmer et al. 2016). The potential applications to

hypothesis testing in epidemiological studies are therefore

broadly similar to ERGMs, but hypotheses about local net-

work dependencies cannot be tested. Furthermore, interpre-

tation of model coefficients can be complicated if the

position of nodes in latent space covaries with values of

nodal attributes (Cranmer et al. 2016).

Latent space models can be fitted in R using the package

latentnet (Krivitsky & Handcock 2008, 2015). Latent space

models can model weighted edges with a number of predefined

error distributions. It is possible to use terms from the ergm

package as explanatory variables in latent space models. How-

ever, these are limited to the binary variants of model terms,

and do not include terms that induce dyadic dependence (such

as those incorporating transitivity) as latentnet only fits

models with dyadic independence. The other possible terms that

can be included in the model are provided in the latentnet
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manual (https://cran.r-project.org/web/packages/latentnet/late

ntnet.pdf).

NETWORK-BASED DIFFUSION ANALYSIS

Network-based diffusion analysis (NBDA) compares the

likelihood of explaining the spread of a trait through a popu-

lation for two individual-based models; one assuming purely

asocial acquisition of a trait, and the other purely social

acquisition of a trait (Franz & Nunn 2009). This tests the

extent to which social transmission is responsible for explain-

ing the spread of that novel trait through a population. It

requires that a single (static) social network and the specific

timing of trait acquisition in each individual is known,

although the latter can be order-based or timing-based (Hop-

pitt et al. 2010). Subsequent developments in the models

have enabled Bayesian inference (Nightingale et al. 2014).

This approach would be particularly valuable in determining

the role of contact networks for the transmission of diseases

that may have alternative hosts or be spread indirectly via

the environment. This is because it tests the hypothesis that

a trait spreads through a network, using asocial transmission

as the null hypothesis. The use of NBDA in real-world pop-

ulations may be slightly limited, however, by the requirement

to know at least the order in which individuals acquired

infection.

Lack of data on the order of infection precludes us frompro-

viding a badger case study; however, R Code to complete

NBDA is available in the relevant literature (e.g. Allen et al.

2013; Aplin et al. 2015) or online (http://lalandlab.st-andrews.ac.

uk/freeware/).

Models for dynamic networks

Incorporating a dynamic view of population social structure

will greatly enhance applications of social networks to epi-

demiology. Both social structure and infection are dynamic

traits that interact at population and individual levels (Fig. 1;

White, Forester & Craft 2017). Two categories of approaches

have been suggested: (i) modelling the changes in a series of

aggregated static networks using GLMMs, stochastic actor-

oriented models (Snijders, Van de Bunt & Steglich 2010) and

temporal ERGMs (Hanneke, Fu & Xing 2010), or (ii) using

relational event models (Butts 2008) to model temporally

explicit contact data. Both of these approaches, especially the

latter, require high-resolution temporal data on social interac-

tions (and to capture co-dynamics similar resolution data on

infection), and so may be limited to detailed datasets.

GENERALISED LINEAR MIXED MODELS AND TEMPORAL

NETWORK AUTOCORRELATION MODELS

Both randomisation-based GLMM and NAM approaches

can be used to study a set of aggregated networks or network

snapshots with, in the latter case, the models becoming tempo-

ral network autocorrelation models (TNAMs). Randomisa-

tion-based GLMM approaches can be extended to network

snapshots by including individual as a random effect in a

Fig. 1. The dynamics of social interactions and disease across two time points (t = 1 and t = 2).Models of static networks can only explore correla-

tions at one point in time; by incorporating dynamicmodelling approaches, it is possible to explore causation. Individual attributes in this graph refer

to both fixed phenotypic traits such as sex, and conditional traits such as physiological stress, immunocompetence and condition. Social response

represents the social behaviour of other individuals towards a focal individual.

© 2017 The Authors and Crown Copyright. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British

Ecological Society., Methods in Ecology and Evolution

Statistical network models and disease 9

https://cran.r-project.org/web/packages/latentnet/latentnet.pdf
https://cran.r-project.org/web/packages/latentnet/latentnet.pdf
http://lalandlab.st-andrews.ac.uk/freeware/
http://lalandlab.st-andrews.ac.uk/freeware/


model that relates social network position and disease state

(alongside other variables of interest). It is also possible to

incorporate change in values of network metrics over time as

an additional variable to improve the extent to which these

models capture the importance of social dynamics. When

GLMMs are used to model a temporal series of networks, the

simplest way to design appropriate randomisations would be

to permute or randomise the network or association data

within the sampling period used to construct each network

snapshot (Farine &Whitehead 2015).

TNAMs can incorporate temporal autocorrelation by

using the lag argument for each model term. This is equally

applicable to the response variable re-fitted as a time-lagged

covariate, e.g. an individual’s disease state being dependent

on its disease state in preceding time-steps; other covariates,

e.g. an individual’s disease state depending on body condi-

tion at a previous time-step as well as the current one; and

network features, e.g. disease state could depend on the dis-

ease state of neighbouring individuals in the network at the

current and preceding time-steps. For cases in which changes

in disease state are regularly observed, this approach offers

great potential to better appreciate the temporal scale over

which social relationships influence acquisition of infection.

The rate of change in observed bTB infection in badgers is

too low relative to our 1-year sample of contact network

data for it to be possible to provide a badger example, but

the implementation of TNAMs in R (also using tnam/

xergm) is very similar to that of NAMs.

STOCHASTIC ACTOR-ORIENTED MODELS

Stochastic actor-oriented models (SAOMs) use an individual-

based approach to model how network structure changes

through time, and can link these changes to structural features

of the network, individual traits or dyadic covariates (Snijders,

Van de Bunt & Steglich 2010; Fisher et al. 2017). Model terms

(structural terms, and individual or dyadic covariates) can be

used to explain both the rate that an individual has an opportu-

nity to change to its network position (the ‘rate’ function) and

the probability that it does so when the opportunity arises (the

‘objective’ function) (Snijders, Van de Bunt & Steglich 2010;

Ripley, Snijders & Preciado 2011). Both individual and dyadic

covariates can remain fixed (e.g. sex in our example) or change

over time, but act only as explanatory variables (e.g. bTB infec-

tion in our example). Individual traits can also coevolve with

network structure and form part of the response.

SAOMs are most appropriate for use with interaction- or

contact-based networks, due to the similar constraints

described for ERGMs (i.e. the uncertainty over the true nature

of interactions and data structure in association-based net-

works). However, similar to ERGMs, it is possible to control

for structural features in interaction- or contact-based data

using covariates, e.g. distance effects or shared group effects

(Fisher et al. 2017). SAOMs can currently model only binary

or ordered networks, so are best used in cases where the pres-

ence/absence of an edge is more informative than its weight, or

when network snapshots are constructed over relatively short

time windows (Fisher et al. 2017). However, being able to

incorporate ordered networks does at least enable

relationships of different strengths to be modelled separately

(see http://www.stats.ox.ac.uk/� snijders/siena/RscriptSiena

Ordered.R), which may be important for particular diseases or

social systems.

A major advantage of using SAOMs is the ability to model

the ‘co-dynamics’ of social strategy and infection status. This

would enable better understanding of what drives the correla-

tion between network position and infection status, especially

important for research on endemic infections. For example,

individuals with more contacts may be more at risk of infec-

tion, but it is equally possible that increases in social contacts

are caused directly by infection or disease. Additionally,

SAOMs enable the modelling of the influence of disease state

and other variables (e.g. sex) on both the probability of indi-

viduals forming particular interactions and the rate at which

they change these interactions. This helps disentangle how dif-

ferent social strategies influence susceptibility to disease.

Finally, an extension of the SAOM framework enables a

response variable, for example immunity, to be fixed once it is

acquired, i.e. no return is possible to the original state (Ripley,

Snijders & Preciado 2011; Greenan 2015), and this may facili-

tate the addition of immunity into hypothesis testing in real-

world contact networks.

SAOMs are implemented in R using the package RSiena

(Ripley, Boitmanis & Snijders 2013). Models are best con-

structed in a stepwise manner (see Supporting Information),

starting with basic structural terms and adding in more

complex structural terms, and then behavioural terms, once

the current model converges and fits the data at each step

(Ilany, Booms & Holekamp 2015; Fisher et al. 2017). The

data requirements, as well as details on tests for model con-

vergence, goodness-of-fit and significance, are provided else-

where (Ripley, Snijders & Preciado 2011; Ilany, Booms &

Holekamp 2015; Fisher et al. 2017). However, we highlight

two important considerations of direct relevance to disease

research. First, it is possible to include individuals that were

not present at all time points by incorporating structural

zeroes into the association matrices (Ripley, Snijders & Pre-

ciado 2011), meaning that individuals that enter or leave a

population during the study period can be included. Sec-

ond, if a trait is intended to coevolve with network struc-

ture in the model, it must be a binary or ordinal variable.

In disease modelling, this is likely to be equivalent to classi-

fying individuals as uninfected or infected, or to using num-

bers that reflect progressive disease states. For example,

multiple classes used to describe bTB infection states in

European badgers (e.g. Graham et al. 2013) could be coded

ordinally.

Using a SAOM to examine seasonal changes in badger

interactions

We use an SAOM to explore badger social network dynam-

ics from summer through winter, showing that there is no

evidence for bTB increasing either the probability of
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interactions or the rate at which interactions change for a

binary network of all interactions (potentially as a result of

using a binary contact network, and the reduced subset of

individuals included; n = 36, cf. n = 51 for the ERGM).

However, there are interesting differences in the rate of net-

work change between the sexes, with males changing their

interactions faster than females between summer and winter.

Differences such as this may provide a behavioural explana-

tion for males being more likely to acquire infection than

females in this system (Graham et al. 2013). Furthermore,

the significant effects of distance between burrows and

shared group membership reveal the importance of spatial

behaviour in structuring the badger social system, and high-

light the importance of accounting for data structure when

using this sort of statistical model.

TEMPORAL EXPONENTIAL RANDOM GRAPH MODELS

Temporal ERGMs (TERGMs) represent a generalisation of

the ERGM framework to a temporal series of static networks

(Hanneke, Fu & Xing 2010; Leifeld, Cranmer & Desmarais

2017). TERGMs assume that a network in one time-step is

dependent on network structure in the preceding time-steps,

with the number of previous time-steps used determined by a

parameter within themodel.

The ability to simulate networks in longitudinal datasets is a

particular advantage of using TERGMs. Studies that use net-

work models of disease in animals often encompass change in

network structure over time, for example in response to sea-

sonal changes (Reynolds et al. 2015). Therefore, TERGMs

offer an ideal framework to simulate networks into the future,

based on a set of network snapshots. In terms of hypothesis

testing, the incorporation of temporal dependencies can enable

(i) the role of disease in network topology to be estimatedwhile

accounting for variation in interaction stability over time or (ii)

the role of disease state in influencing temporal changes in

interactions to be estimated (if disease state of two individuals

is included as a dyadic covariate).

TERGMs can be fitted using the package btergm, part of

the xergm package suite (Leifeld, Cranmer & Desmarais

2016) in R. The TERGM framework can handle changes in

network size between time-steps if row or column labels are

provided in thematrix. This can be achieved by removing these

nodes or by incorporating them as structural zeroes. However,

within a time-step, individuals must possess a full set of net-

work information and covariate values. If this is problematic,

it is possible to impute values either for covariates or network

data (e.g. Koskinen et al. 2013). Basic imputation can be done

within the xergm package.

The btergm() function enables models containing time-

dependent covariates (timecov() argument) and effects of

tie stability (memory() argument) and delayed reciprocity

(delrecip() argument for directed networks) to be fitted

alongside conventional ERGM terms (Table 2; Leifeld, Cran-

mer & Desmarais 2017). The parameter k defines the number

of preceding time-steps which affect the current time-step. It is

possible for k to take values greater than 1, but as k increases,

the number of time-steps remaining to model reduces, placing

a constraint upon the user. The timecov() argument enables

interactions between dyadic covariates and temporal trends in

edge formation (with the exact nature of the temporal trend

provided as a function by the user) so is likely to be especially

useful in understanding differences in interactions linked to

infection status. The provision of a user-defined temporal pat-

tern of interactions requires some careful thought from the

researcher when implementing the model, but provides a more

flexible tool for defining temporal change in network structure

than available in SAOMs. Furthermore, other dyadic covari-

ates can vary through time if they are provided as a list of

matrices. This is likely to be particularly relevant to individual-

level variables that also vary temporally.

Example TERGMs for badger-TB epidemiology

We provide some basic examples of the fitting of TERGMs to

our dataset in the supplementary material, making use of the

same subset of data used for the SAOM example. While only

using a temporal series of three networks restricted us to simple

model constructs, we show how the different terms can be used

to test hypotheses about temporal changes in network struc-

ture alongside hypotheses related to individual-level covari-

ates. The first example model shows that there is greater

stability in badger contact networks than expected by chance

(Table S4), while the second shows that there is a decline in the

probability of contacts between summer and winter

(Table S5). There is no consistent pattern between models for

the effects of bTB infection and sex, suggesting the use of bin-

ary network datamight be limiting the power of detecting these

effects. These example models are also used to show how to

use goodness-of-fit tests for TERGMs (Fig. S3). For further

information we refer readers to Leifeld & Cranmer (2015) and

Leifeld, Cranmer&Desmarais (2017).

RELATIONAL EVENT MODELS

Relational event models (REMs) provide a modelling frame-

work capable of analysing data on contacts, interactions or

associations that have not been aggregated, remain temporally

explicit and are instantaneous events withoutmeasurable dura-

tion (Butts 2008; Tranmer et al. 2015). The concept is similar

to event models used in survival analysis, and estimates a haz-

ard function for the rate of interaction events conditional on

covariates measured on either individuals or events, and also

on patterns of these interactions in the past (Tranmer et al.

2015). Within a ‘relational’ framework, it is possible to addi-

tionally estimate coefficients for the influence of network

effects on these events such as transitivity – a tendency to inter-
act with ‘friends of friends’ (Butts 2008). It is now possible to

incorporate a decay function so that events that have happened

more recently have a greater effect (Lerner et al. 2013). In addi-

tion, another recent extension of the REM framework can be

used to make them applicable to two-mode networks (Bran-

denberger 2016), in which edges can only connect between two

independent sets of nodes. This could extend their use to
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association-based networks in which individuals are connected

to particular groups or locations rather than directly to each

other.

The potential applications of REMs to wildlife disease

research are manifold, especially given the growing number

of studies in this field that use temporally explicit data from

proximity loggers (e.g. Hamede et al. 2009; Cross et al.

2012; Weber et al. 2013). This framework could be highly

informative in understanding how the acquisition or progres-

sion of an infection influences the likelihood of repeat social

contacts with uninfected individuals, or the persistence of an

individual’s social associations (Fig. 1). Additionally, for

populations in which social structure represents an impor-

tant barrier to the spread of infection, REMs would facili-

tate the modelling of differences between the dynamics of

intra-group and inter-group interactions. The temporal

structure of inter-group interactions would be expected to

have a substantial effect on disease spread and previous

interactions within a dyad, especially those in the recent

past, could increase the likelihood of further interactions

occurring. Finally, differences in these parameters between

the sexes or for individuals of different ages might explain

patterns of age- or sex-biased infection.

REMs can be fitted in R using the package rem (Branden-

berger 2016) or using the package relevent (Butts 2008),

with prior data manipulation requiring the package informR

(Marcum & Butts 2015). This includes the addition of support

constraints (additional binary indicators within the model that

restrict which actions or events are possible) that can help

account for elements of the study design, and therefore are

likely to be particularly beneficial in studies of animals (Tran-

mer et al. 2015). For example, support constraints could

inform a model when individuals are collared in a contact net-

work study, or to indicate whether two individuals are on dif-

ferent sides of a geographical barrier (e.g. a river) and therefore

unable to interact. Extensions to incorporate weightings on

temporal dependencies among events are incorporated in the

rem package.

Choosing amodel

With such a wealth of approaches, it may not be immediately

clear which offers the most appropriate tool to test a particular

hypothesis. In Table 1, we outline the advantages and disad-

vantages of using all of the modelling frameworks outlined

here. In Fig. 2, we provide a data- and question-driven

approach to selecting the most suitable statistical tool. For fur-

ther comparisons between statistical models of networks, and

guidance to their usage, we refer readers to recent reviews in

other subject areas (Hunter, Krivitsky & Schweinberger 2012;

Leifeld & Cranmer 2015; Cranmer et al. 2016). In addition to

using statistical network models, it may also be possible to use

statistical models of contact rates to test hypotheses relating

disease and social behaviour, especially within social groups

(Cross et al. 2012).

There are a few important general rules to consider when

selecting a modelling framework. The first of these is how the

network data are obtained. Networks constructed using

group-based (or association-based) approaches contain data

structure and biases that on current knowledge require ran-

domisation-based approaches that employ GLMs or

GLMMs. For networks constructed from defined social con-

tacts or interactions, then any approach could be useful

depending on the question of interest. If data are temporally

Fig. 2. Aguide to statistical model use to test hypotheses about the relationship between social contacts/interactions and disease for themost appro-

priate models to test hypotheses about networks and disease. GLM, generalised linear model; GLMM, generalised linear mixed model; NAM, net-

work autocorrelationmodel; TNAM, temporal network autocorrelationmodel; ERGM, exponential random graphmodel; NBDA, network-based

diffusion analysis; SAOM, stochastic actor-orientedmodel; TERGM, temporal exponential random graphmodel; REM, relational eventsmodel.
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explicit (time-ordered) then the use of REMs offers the most

powerful analytical approach by facilitating the use of tempo-

ral patterns of contacts in addition to their structure. However,

these models are complex to construct and so for answering

simpler questions it might be appropriate to aggregate data

into a temporal series of networks and use simpler approaches.

It may even be that for some questions aggregating all network

data into a single static network still enables the relevant

hypotheses to be tested.

When selecting between network-focussed statistical mod-

els – (T)ERGMs, (T)NAMs and SAOMs – a fundamental

first consideration is whether the hypotheses being tested

are related to properties of relational data or the properties

of nodes. For hypotheses related to network topology, (T)

ERGMs and SAOMs are most appropriate, while for

nodes, (T)NAMs are best (or alternatively GLMMS with

randomisations). Many hypotheses revolving around the

topic of social behaviour and disease are most suitable for

testing using models of network topology. For example,

any question asking whether diseased individuals show dif-

ferent patterns of social behaviour to non-diseased individu-

als, or asking how social behaviour changes as infection

state changes are ‘network topology’ questions. (T)NAMs

are especially useful in testing hypotheses linking change in

infection status to the network position of an individual

and the infection status of individuals surrounding it in the

network (alongside any other individual-level fixed effects).

Thus, modelling how network structure influences the prob-

ability of acquiring infection should be considered a ‘node-

based’ question.

Missing information and hypothesis testing in
networks

Many network studies of disease transmission are likely to

contain missing information, either because they are based

on a subsample of the total population or record only a

subset of the interactions that occur among individuals.

Few studies have investigated the impact of missing infor-

mation on network analysis (but see e.g. Lee, Kim & Jeong

2006; Smith & Moody 2013; Silk et al. 2015; Smith, Moody

& Morgan 2017), and none has gone on to test how differ-

ent types and levels of missing information affect hypothesis

testing approaches. As a result, we would currently urge

caution in applying these methods where networks are con-

structed using only a small proportion of individuals within

a study population. An alternative option when there are

high levels of missing information is to model contact rates

independently of network structure, for example the meth-

ods outlined in Cross et al. (2012). If statistical network

methods are influenced in different ways by the subsampling

of network data, then the choice of model might also

depend on the level of sampling in the network of interest.

For example, Shalizi & Rinaldo (2013) suggested that an

ERGM based on a sampled network is unlikely to reflect

population-level parameters, although how this might affect

the testing of hypotheses is unclear. Conversely, P�aez, Scott

& Volz (2008) found that the power of NAMs to detect

network effects remained high until a majority of edge

information was missing. Developing an improved under-

standing of how different modelling approaches are affected

by sampling of a network will be a valuable area of future

methodological research.

Network approaches and epidemiological
modelling

A natural end point of applying social network analytical

methods to the study of disease is in helping to construct and

parameterise epidemiological models and there are numerous

advantages of this approach. First, uncertainty can be incorpo-

rated more easily – any estimates for structural effects or indi-

vidual differences from ERGMs, SAOMs or REMs will

include standard errors, which can be included to test the

robustness of the conclusions drawn from the model. Second,

statistical models (especially ERGMs) facilitate the easy simu-

lation of large number of networks with equivalent expected

properties to the observed network, useful for simulation-mod-

elling of disease. Third, the use of dynamic statistical models

(SAOMs, temporal ERGMs) makes it easier to incorporate

information on network dynamics into any constructed mod-

els. For SAOMs in particular, the ability to estimate the co-

dynamics of social strategy and disease could have major

implications (e.g. the inclusion of avoidance behaviour in epi-

demiological models: Shaw & Schwartz 2008; Tunc & Shaw

2014). As a result, the incorporation of these statistical net-

work models alongside epidemiological models offers great

potential to develop stronger links between empirical data and

disease modelling, especially in models of endemic diseases, for

which the co-dynamics of social systems and infection are

likely to bemore important.

Conclusions and future directions

There is considerable scope to extend current modelling

frameworks and it would be highly beneficial for epidemio-

logical researchers to become more involved in their contin-

ued development. For example, many of these methods are

rather poor at dealing with missing data, and integrating ele-

ments from Bayesian population models (using state-space/

multi-state models to address the issue of missing data and

hidden states: K�ery & Schaub 2012) and models of network

topology could make substantial advances in dealing with

this issue.

Developments in hypothesis testing in networks will enable

important progress in understanding the links between individ-

uals, social structure and infection. This is especially true for

endemic infections, such as with our worked examples of bTB

in badgers, where the longer time-scales involved will mean

that understanding the dynamic interaction between social

behaviour and disease is that much more important. Further-

more, implementing statistical approaches specifically

designed to model networks can facilitate more detailed

parameterisation of epidemiological models and provide an

© 2017 The Authors and Crown Copyright. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British
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idea of uncertainty around key parameters. Together this

means that statistical models of networks can offer a powerful

tool in linking empirical data on population social structures

with theoretical models of disease.
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Data S1. The application of statistical network models in disease

research: Word document containing a description of and results from

the four example analyses used in the paper, together with the anno-

tated R code for implementing these examples.

Data S2. (Ages.csv): Age data for use in network autocorrelation

model and exponential randomgraphmodel examples.

Data S3. (Complete Membership.csv): Social community membership

for use in network autocorrelation and exponential random graph

model examples.

Data S4. (indivsexes.csv): Sex data for use in network autocorrelation

model and exponential randomgraphmodel examples.
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Data S5. (overallnetwork.csv): Network data for use in network auto-

correlationmodel and exponential random graphmodel examples.

Data S6. (TBstatsF.csv): bTB infection data for use in network auto-

correlationmodel and exponential random graphmodel examples.

Data S7. (autumnmatrix.csv): binary autumn network for use in

stochastic actor-oriented model and temporal exponential random

graphmodel examples.

Data S8. (summermatrix.csv): binary summer network for use in

stochastic actor-oriented model and temporal exponential random

graphmodel examples.

Data S9. (wintermatrix.csv): binarywinter network for use in stochastic

actor-oriented model and temporal exponential random graph model

examples.

Data S10. (grouplocsSAOM.csv): group location data for use in the

stochastic actor-orientedmodel example.

Data S11. (MembershipSAOM.csv): Social community membership

data for use in the stochastic actor-orientedmodel example.

Data S12. (SAOMsexes.csv): Sex data for use in the stochastic actor-

orientedmodel example.

Data S13. (SAOMTBstats.csv): bTB infection data for use in the

stochastic actor-orientedmodel example.

Data S14. (MembershipTERGM.csv): Social community membership

data for use in the stochastic actor-orientedmodel example.

Data S15. (TERGMsexes.csv): Sex data for use in the stochastic actor-

orientedmodel example.

Data S16. (TERGMTBstats.csv): bTB infection data for use in the

stochastic actor-orientedmodel example.
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