Tanjona Ramiadantsoa (with materials from Atte Molainen)

Metapopulation

Ilkka Hanski 1953-2016

Model system for metapopulation

Glanville fritillary butterfly *Melitaea cinxia*

Model system for metapopulation

Glanville fritillary butterfly *Melitaea cinxia*

Saccheri et al. 1998

Metapopulation game

Those numbers are the number of individuals a patch can support

- Butterfly (14 males and 14 females)
- * Predator (1)
- Parasitoid (2)
- Patch controller (7)

Rules

- * Your goal is to mate as many times as possible!!!
 - * You can only mate within a patch
 - * You can only mate with an individual of the opposite sex
 - * You have to leave the patch to mate again with the same individual
 - * Individuals have different allele (denoted by a letter)
 - If you mate with an individual of the same allele, you get one point (inbreeding)
 - If you mate with an individual with different allele, you get three points (outbreeding)

Final rules

- * The **predator** resides in the matrix
 - * If you get caught by the predator, you are out of the game
- * The **parasitoids** reside in the matrix
 - * If you get caught by the parasitoid, you lose one point
- * Patch can be **temporarily unsuitable (stochasticity)**, it can be
 - * Local: the patch controller raises the hand and you have the leave the patch
 - * Global: all the patches are unavailable and you have to leave all of them

Let's go and play

Many processes

Simplify

landscape processes, habitat loss climate change

Levins' metapopulation (1969)

"A set of population connected by migration"

Richard Levins

A simple model

Levins' deterministic model

- Spatially implicit
 - All patches have the same quality -> same
 probability of going
 extinct (e)
 - Distances among patches don't matter -> same probability of being colonized (c)
- *p*: faction of patchesoccupied

Dynamic and equilibrium

$$\frac{dp}{dt} = cp(1-p) - ep$$

 $\frac{dp}{dt}$

cp(1-p) - ep = 0

 $p^* = 0 \text{ or } p^* = 1 - \frac{e}{-1}$

= 0

 \Leftrightarrow

 \Leftrightarrow

С

Solution with different initial conditions

Adding habitat loss (h)

$$\frac{dp}{dt} = cp(h-p) - ep$$

left (*h*)

0.1

0.3

0.8

Solution with different habitats

The new equilibrium is $p^* = 1 - \frac{e/c}{h}$

Persistence if $p^* > 0$, i.e., h > -

Extinction threshold

Ecology vs. Epidemiology

Ecology ~ Epidemiology

Ecology ~ Epidemiology

Metapopulation ~ Epi SIS

The fraction of occupied patch at equilibrium is

$$p^* = 1 - \frac{\text{extinction rate}}{\text{colonization rate}} = 1 - \frac{e}{c}$$

* If *h* is the fraction of suitable patches, the metapopulation goes extinct if

$$h < \frac{e}{c}$$

The fraction of infected individuals at equilibrium is

$$p^* = 1 - \frac{\text{recovery rate}}{\text{transmission rate}} = 1 - \frac{\gamma}{\beta}$$

* If $h = 1 - p_c$ is the fraction of unvaccinated individuals, the disease is eradicated if

$$h < \frac{\gamma}{\beta} = \frac{1}{R_0}$$