Tanjona Ramiadantsoa

A history of your new skills

E2M2 2020 Valbio Ranomafana January 10th, 2020

What is a scientist?

Steps in a modeling project

- 1. Development of the study concept and question
- 2. Literature review
- 3. Data collection
- 4. Construction of model framework
- 5. Model analyses and selection
- 6. Model validation
- 7. Manuscript writing and submission

Literature review

- Who has tried to answer this before and how did they do it?
 - Empirical studies
 - Modeling studies
- What are these studies short-comings?
- Are there already parameter estimates or data sets to help you answer.

Manuscript writing and submission

- What are the main results that provide the answer to my question?
 - 1 to 3 graphs
 - 1 to 3 tables
- What is the journal that best fits my study?
 - Scope, audience, impact factor, math focus
- How do I present my manuscript?
 - · Introduction: set the stage to your question
 - Methodology: describe explicitly all steps for replicability
 - Results: clear and concise
 - Discussion: explain how your study improves previous knowledge

Steps in a modeling project

- 1. Development of the study concept and question
- Literature review

To help you prepare, try to answer the next few questions after reading:

- What are the context and key points of the paper?
- Identify the problem that inspired the authors to write the article.
- Do you agree with the methods, the results, and the discussion?
- Where do the authors use models to address their questions? What type of models can you identify?
- What do you like and what do you dislike about the paper?
- What did you not understand?
- What have you learned from the paper?
- And come up with three questions of your own.

ssion

the answer to my question?

- What is the journal that best fits my study?
 - Scope, audience, impact factor, math focus
- How do I present my manuscript?
 - Introduction: set the stage to your question
 - Methodology: describe explicitly all steps for replicability.
 - Results: clear and concise
 - Discussion: explain how your study improves previous knowledge

Study Design

- Define the research question: What are we trying to answer?
- 2. Define the **sample type**: What data do we need to answer our question?
- 3. Identify a system: Where can we collect our data?
- 4. Choose a sampling scheme: How should we collect our data?
- 5. Acknowledge limitations: What can we actually infer from our data?
- 6. Outline a data organization plan: How should we organize our data?
- 7. Be flexible: How can we prepare for potential/unanticipated challenges?

Take homes

- Research question and hypothesis are more important that models
- Any data needs context: the X and Y should be clear
- Models are rigorous tools to assess how the data support the claim
 - There are figuratively an infinite number of models
 - Statistical model works with question starting with what
 - Mechanistic model generates data and works with question starting with how

Two broad classes of models

Statistical

Correlative

Mechanistic

Causative

Mechanistic (mathematical) model

- Process-driven with question starting with How
- * You generate data with simulation

Discrete vs. continuous

 $N(t) = N(0)e^{rt}$

Deterministic vs. stochastic

The basic population model

starting population

if deterministic

"always the same"

probability of death = 0.5

starting population

if stochastic?

"up to chance"

probability of death = 0.5

Non-spatial vs. spatial vs. network

Compartment models

Insights

The SIR model : eradication

The predatorprey model

Extinction threshold = the root

Extinction threshold:
$$h = \frac{e}{c}$$

Two broad classes of models

Statistical

Correlative

Mechanistic

Causative

Statistical model

- Data-driven with question starting with What
- Test patterns in data using predefined functions

Statistical model

- Data-driven with question starting with What
- Test patterns in data

POSITIVE PROOF OF GLOBAL WARMING

Correlation does not imply causation

Univariate linear model: simple linear regression

- Quantify the relationship between the response variable and each explanatory variable
- Linear relationship: y = a + bx + ε
 - y: response variable, x: explanatory variable
 - a: intercept, b: slope, ε: Error or residual
- Minimize the error

Multilinear model

```
Call:
lm(formula = taille ~ age + sexe + GIparasites + malaria, data = lemur.
Residuals:
     Min
                  Median
-12.3696 -4.2168 0.0111 3.8716
                                    9.9466
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 24.37448
                      1.40044 17.405 < 2e-16 ***
            0.87527
                       0.05423 15.141 < 2e-16 ***
sexeMale
           10.20143
                      1.04410 9.771 5.11e-16 ***
GIparasites -0.38170
                       0.02601 -11.598 < 2e-16 ***
malariaOui -0.16413
                      1.04603 -0.100
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.203 on 95 degrees of freedom
Multiple R-squared: 0.8463, Adjusted R-squared: 0.8399
F-statistic: 130.8 on 4 and 95 DF, p-value: < 2.2e-16
```

Model validation

Generalized linear model

- Extend the linear model framework by using a linear predictor and a link function
- link function: describe the relationship betweeen the linear combination of the explanatory variables and the mean of the response variable
- Rcommand: glm(response_variable~
 explanatory_variable,family= family_distribution)

Most common family function :

Gaussian : Identity Binomial : logit Poisson : log

Neg binomial: log

Why use GLMMs?

Generalized linear mixed models include both fixed effects and random effects in order to allow for:

- Repeated measures
- Temporal correlation
- Spatial correlation
- Heterogeneity
- Nested data

The R function to fit a generalized linear mixed model is glmer() which uses the form fitted.model <- glmer(formula, family="model family", data=data.frame)

Network analyses

MRQAP (Quadratic Assignment Procedure)

- Multiple Regression Quadratic Assignment Procedure
 - Basically logistic regression analysis applied to matrix data.
 - Is your response variable linked to explanatory variable 1 while controlling for all other variables?

Fit mechanistic models to data

Fit mechanistic model to data

Combines the best of mechanistic and statistical method

Mechanistic model

Minimize sum of squares

Model selection

- * Some methods
 - * R^2 , adj- R^2
 - * Least square
 - * Log likelihood
 - * AIC
 - * BIC
 - * RMSE
 - *
- * There is no consensus among statisticians...it is an art

You can always fit a model, and select the best model But it is just the best based on what you tried

More on quantitative skills

Basic R

More advanced R

Spatial visualization

Model construction
Forward simulation in time
Optimization
Precise visualization

Solving differential equations?

Useful math

Greek letters

Αα	Вβ	Γγ	Δδ	Еε	Ζζ	Нη	$\Theta \Theta$
42.pa	print.	Aphlya	363.10	thyris.tv	θήτα	fpx	64px
alpha	bella	gamma	della	epsion	zwia	arba	Une to
	b	17	el		z	ē	th
[a/ac]	[b]	[g]	[d]	[e]	[zd/dz]	[r:]	[1 _n]
Iι	Kκ	$\Lambda\lambda$	$M\;\mu$	Nν	Εξ	0.0	$\Pi\pi$
4650	10022345	3.6µ\$8e.	0.0	90	86	банарён	mel.
lota	kappa	lambda	mu	PU.	xII	om#gon	pl
1	k		m	n	km/c	0	p.
[6/8]	[k]	[1]	[m]	[n]	[ics]	[0]	[p]
Ρρ	$\Sigma \ \sigma/\varsigma$	$T\tau$	Yυ	Φφ	$X\chi$	$\Psi \psi$	$\Omega\omega$
$\phi \alpha$	digue	TOO	Bryander.	φű	20	96	δμέγα
rho	sigma.	1290	upsion	pihi	chi	psi	omega
nith	6		wy	ph	khich	ps.	0
fe1	Fe/e1	0.1	Darker1	lob)	nj. brj	fool	Dell

Eigenvectors and eigenvalues

$$M = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 4 & 1 \\ 0 & -2 & 1 \end{bmatrix} \quad v_1 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} \quad v_2 = \begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix} \quad v_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{array}{ll} * \ M \cdot v_1 = 3v_1 & \text{ if } V = [v_1 \ v_2 \ v_3] = \begin{bmatrix} -1 & -2 & 1 \\ -1 & -1 & 0 \\ 1 & 2 & 0 \end{bmatrix} \\ * \ M \cdot v_2 = 2v_2 & \text{ and } \Lambda = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ then } M = V^{-1} \Lambda V \\ \end{array}$$

Function properties

- * Intercept/root(s)
- * Positive/negative value
- Maximum/minimum value
- Increasing/Decreasing/ Constant
- * Concave/Convexe
- * Asymptotic

GLMM Network LM, GLM Advanced R The new you Compartment model Basic R Research questions Basic math

Steps in a modeling project

- 1. Development of the study concept and question
- 2. Literature review
- 3. Data collection
- 4. Construction of model framework
- 5. Model analyses and selection
- 6. Model validation
- 7. Manuscript writing and submission

You are now well equipped

Any aminareo ny baolina

