Study Design and Data Collection

Ecological and Epidemiological Modeling in Madagascar Centre ValBio, Ranomafana, January 2020

What *is* science?

the **systematic observation** of natural events and conditions in order to **discover facts** about them and to **formulate laws and principles** based on these facts

-- Academic Press Dictionary of Science and Technology

How to *do* science?

How to *do* science?

Goals for this lecture

- Outline the study design process
- Understand why study design helps us "do" science
- R tutorial: sample and data organization with Ekipa Fanihy

1. Define the **research question**: What are we trying to answer?

- 1. Define the **research question**: What are we trying to answer?
- 2. Define the **sample type**: What data do we need to answer our question?

- 1. Define the **research question**: What are we trying to answer?
- 2. Define the **sample type**: What data do we need to answer our question?
- 3. Identify a **system**: Where can we collect our data?

- 1. Define the **research question**: What are we trying to answer?
- 2. Define the **sample type**: What data do we need to answer our question?
- 3. Identify a **system**: Where can we collect our data?
- 4. Choose a **sampling scheme**: How should we collect our data?

- 1. Define the **research question**: What are we trying to answer?
- 2. Define the **sample type**: What data do we need to answer our question?
- 3. Identify a **system**: Where can we collect our data?
- 4. Choose a **sampling scheme**: How should we collect our data?
- 5. Acknowledge **limitations**: What can we actually infer from our data?

- 1. Define the **research question**: What are we trying to answer?
- 2. Define the **sample type**: What data do we need to answer our question?
- 3. Identify a **system**: Where can we collect our data?
- 4. Choose a **sampling scheme**: How should we collect our data?
- 5. Acknowledge **limitations**: What can we actually infer from our data?
- 6. Outline a **data organization plan**: How should we organize our data?

- 1. Define the **research question**: What are we trying to answer?
- 2. Define the **sample type**: What data do we need to answer our question?
- 3. Identify a **system**: Where can we collect our data?
- 4. Choose a **sampling scheme**: How should we collect our data?
- 5. Acknowledge limitations: What can we actually infer from our data?
- 6. Outline a **data organization plan**: How should we organize our data?
- 7. Be **flexible**: How can we prepare for potential/unanticipated challenges?

Systematic observation w/o a question = searching for mystery treasure

Х

X

Х

X

Х

Every component of study design hinges on the research question

- **Research question** = the target
- **Study design** = an effective and efficient route to answering the question

Every component of study design hinges on the research question

- **Research question** = the target
- **Study design** = an effective and efficient route to answering the question

Good research questions are:

Every component of study design hinges on the research question

- **Research question** = the target
- **Study design** = an effective and efficient route to answering the question

Good research questions are:

- Clear
- Focused and testable
- Original
- Based on previous observations

- 1. Define the **research question**: What are we trying to answer?
 - Formulate a hypothesis
 - > Develop a **model** to demonstrate your hypothesis

Every component of study design hinges on the research question

- **Research question** = the target
- **Study design** = an effective and efficient route to answering the question

Good research questions are:

- Clear
- Focused and testable
- Original
- Based on previous observations

How do bat populations maintain virulent human-infection viruses?

How do bat populations maintain virulent human-infection viruses?

What is the **force of infection** of henipaviruses in Madagascar *Eidolon dupreanum* populations?

What is **data**?

What is **data**? = evidence to support a claim

Force of infection =

Rate at which bats become infected

What is **data**? = evidence to support a claim

What is **data**? = evidence to support a claim

Choosing a study population that allows you to **answer your research question**:

- > effectively
- tractably—time, money, and effort are limited resources

Target population: Want to make inferences about **Target** population = Madagascar bats

Choosing a study population that allows you to **answer your research question**:

- > effectively
- tractably—time, money, and effort are limited resources

Target population: Want to make inferences about

Source population: Choosing study population **Target** population = Madagascar bats

Source population = Ankarana bats

Choosing a study population that allows you to **answer your research question**:

- > effectively
- tractably—time, money, and effort are limited resources

Target population: Want to make inferences about

Source population: Choosing study population

Study population: Sampled individuals

Choosing a study population that allows you to **answer your research question**:

- > effectively
- tractably—time, money, and effort are limited resources

Target population: Want to make inferences about

Source population: Choosing study population

Study population: Sampled individuals

Well designed studies allow us to make inference about the target population

Choosing a study population that allows you to **answer your research question**:

- > effectively
- tractably—time, money, and effort are limited resources

4. Choose a sampling scheme: How should we collect our data?

The study population should be randomly selected from the source population

Choose a **sampling scheme**: How should we collect our data?

Observational

- Descriptive
- Cross-sectional
- Longitudinal
- Ecological

Experimental

- Experimental Ecology
- Randomized Control Trial (RCT)

There are several **study types** to choose from... but not all types will be able to answer your question
Observational

- Descriptive
- Cross-sectional
- Longitudinal
- Ecological

Experimental

- Experimental Ecology
- Randomized Control Trial (RCT)

Observational vs. Experimental?

Observational

- Descriptive
- Cross-sectional
- Longitudinal
- Ecological

Experimental

 Randomized Control Trial (RCT) **Descriptive** studies = observational research that describes the **characteristics** of a population

focus on the what instead of the why

Good for generating hypotheses, especially when data is limited
➢ Bat survey: we need to find the bats before we can study their viruses

Not all studies are hypothesis-driven... but research really does always start with a question

Observational

- Descriptive
- Cross-sectional
- Longitudinal
- Ecological

Experimental

- Experimental Ecology
- Randomized Control Trial (RCT)

Cross-sectional studies = snapshot of the **population at a particula point in time**

•

•

Observational	
Descriptive	
Cross-sectional	Source .
Longitudinal Ecological	source population time
<u>Experimental</u> Experimental Ecology Randomized Control	Cohort studies = follow a group of individuals over a period of time
Trial (RCT)	Individual A
	Individual B
	Individual C time

Longitudinal studies = follow a population over a **period of time**

Observational

- Descriptive
- Cross-sectional
- Longitudinal
- Ecological

Experimental

- Experimental Ecology
- Randomized Control Trial (RCT)

Unit of **comparison** = **populations** instead of individuals

Observational

- Descriptive
- Cross-sectional
- Longitudinal
- Ecological

Experimental

- Experimental Ecology
- Randomized Control Trial (RCT)

Observational

- Descriptive
- Cross-sectional
- Longitudinal
- Ecological

Randomized Control Trial = subjects are randomly allocated into groups (test and control) to receive or not receive a treatment

Experimental

- Experimental Ecology
- Randomized Control Trial (RCT)

Observational

- Descriptive
- Cross-sectional
- Longitudinal
- Ecological

Experimental

- Experimental Ecology
- Randomized Control Trial (RCT)

Randomized Control Trial = subjects are randomly allocated into groups (test and control) to receive or not receive a treatment

Observational

- Descriptive
- Cross-sectional
- Longitudinal
- Ecological

Experimental

- Experimental Ecology
- Randomized Control Trial (RCT)

Randomized Control Trial = subjects are randomly allocated into groups (test and control) to receive or not receive a treatment

5. Acknowledge **limitations**: What can we actually infer from our data?

5. Acknowledge **limitations**: What can we actually infer from our data?

5. Acknowledge **limitations**: What can we actually infer from our data?

Designing your 1) field datasheet

	IDENTITY				Species <u>R. mashyorad</u> Ne MEASUREMENTS					MISC. SAMPLES		SWABS			LOOD			AGE	Temp Track Write as: Temp (time)
Sample	Tag #	M / F?	Mom/ baby pair? Y/N	Weight	Body	Fore-	Tibia	Ear	Tes/ Mam (L)	Hair Y/N	Ectos (# BF, MS,	UR (#) FEC (#)	Amt plain eppdorf (serum)	Amt EDTA eppdorf (plasma)	Amt RNA- tube (ul)	# slides <i>thick</i>	Fltr?	Tooth? Y/N	
	recap? Y/N	class (M: J./A. F: J/ NL/P/L) *if young of the yr	ID # of mom/ baby	(g) [*]	(cm)	arm (mm)	(mm)	(mm)	(W)	Wing Punch in EtOH (#)	M, FL, T)	THR (#)	Target: _Eid/Pter: >500ul Rousettus: >300ul	Target: Eid Pter: 150-200ul Rousettus: 100-150ul	Target: Eid Pter: >200ul Rousettus: >40ul	thin	Y/N	Assess (new. mild, mod, heavy)	
9560000 ROU 160	N N	S: F C: NL		86 34 52	112.1	70.9	33-8	146	L: 3.4 W: 2.4	Hair WP:	BF:2 T-1 M:4	UR: THR: FÉC:	350	150	100	TK: TN:	Y	T: M A: Hild.	
Rouisi	005670812 N	A	· ····································	85 34	111:8	71-0	34-2	12-9	W: Smyl	Hair: y WP:	8F.1 M=13 FL:1 T=1	UR: THR: FEC:	350	150	100 -	TK: TN: L	.4	A: Mild	
9560000 Roui63		s: F c: HL		81 347	110-7	71-3	31-)	12-9	W:	Hainy WP:	BF:3 M:6 T:1	UR: THR: FEC:	400	150	80	TK: TN: 2	7	T:M A: Mild	*
95600000 ROULdy	D5605949	S: F C: N(89	113-1	73-4	34-4	12-8	L:1 W: 3-2	Hair: WP:	BF=7 M=6 FL>2	UR: 1 THR: 1 FEC: 1	350	150	100	TK: TN:	Y	T: N A: Mild	

Designing your 1) field datasheet 2) database structure

Compiling data the "long way"➢ identifying information stored in columns

SITE DATA				Identification			
Roost Site	Researchers	Date	Net Night	Bat Species	Sample ID		
Lakato	CB, CR, LA	8/22/13	2	Eidolon dupr	LKT-001		
Lakato	CB, CR, LA	8/22/13	2	Eidolon dupr	LKT-002		
Lakato	CB, CR, LA	8/22/13	2	Eidolon dupr	LKT-003		
Lakato	CB, CR, LA	8/22/13	2	Eidolon dupr	LKT-004		
Lakato	CB, CR, LA	8/22/13	2	Eidolon dupr	LKT-005		
Marovitsika	CB, CR, AR	11/4/13	1	Pteropus rufe	MARO1		
Marovitsika	CB, CR, AR	11/4/13	1	Pteropus rufe	MARO2		
Marovitsika	CB, CR, AR	11/4/13	1	Pteropus rufe	MARO3		
Marovitsika	CB, CR, AR	11/4/13	1	Pteropus rufe	MARO4		
Marovitsika	CB, CR, AR	11/4/13	1	Pteropus rufe	MARO5		
Marovitsika	CB, CR, AR	11/6/13	3	Pteropus rufe	MARO6		
Marovitsika	CB, CR, AR	11/7/13	4	Pteropus rufe	MARO7		
Marovitsika	CB, CR, AR	11/7/13	4	Pteropus rufe	MARO8		
Marovitsika	CB, CR, AR	11/7/13	4	Pteropus rufe	MARO9		
Marovitsika	CB, CR, AR	11/8/13	5	Pteropus rufe	MARO10		
Marovitsika	CB, CR, AR	11/8/13	5	Pteropus rufe	MARO11		
Marovitsika	CB, CR, AR	11/8/13	5	Pteropus rufe	MARO12		
Marovitsika	CB, CR, AR	11/8/13	5	Pteropus rufe	MARO13		
Ambakoana	CB,CR, AR, R	11/15/13	1	Pteropus rufe	AMB1		
Ambakoana	CB,CR, AR, R	11/15/13	1	Pteropus rufe	AMB2		
Ambakoana	CB,CR, AR, R	11/15/13	1	Pteropus rufe	AMB3		
Ambakoana	CB,CR, AR, R	11/15/13	1	Pteropus rufe	AMB4		
Ambakoana	CB,CR, AR, R	11/15/13	1	Pteropus rufe	AMB5		
Ambakoana	CB,CR, AR, R	11/15/13	1	Pteropus rufi	AMB6		

Designing your 1) field datasheet

- 2) database structure
- 3) sample storage system

Box Number	Sample Type	Species	Reagent	SampleID	Date Stocka	Notes
PR-FEC-1	Feces	Asio madaga	UTM	AMAK_001	4/25/18	
PR-RNA-BLD	Whole Blood	Asio madaga	RNA-protect	AMAK_001	4/25/18	
PR-THR-1	Throat	Asio madaga	UTM	AMAK_001	4/25/18	
PR-SER-A-1	Serum A	Asio madaga	raw	AMAK_001	4/25/18	
PR-SER-B-1	Serum B	Asio madaga	raw	AMAK_001	4/25/18	
PR-PEL-A-1	Blood Pellet	Asio madaga	raw	AMAK_001	4/25/18	
PR-PEL-B-1	Blood Pellet	Asio madaga	raw	AMAK_001	4/25/18	

7. Be flexible

7. Be flexible

Study Design: Examples from E2M2?

- 1. Define the **research question**: What are we trying to answer?
- 2. Define the **sample type**: What data do we need to answer our question?
- 3. Identify a **system**: Where can we collect our data?
- 4. Choose a **sampling scheme**: How should we collect our data?
- 5. Acknowledge limitations: What can we actually infer from our data?
- 6. Outline a **data organization plan**: How should we organize our data?
- 7. Be **flexible**: How can we prepare for potential/unanticipated challenges?