E²M²: Ecological and Epidemiological Modeling in Madagascar

Ecology Meets Epidemiology

Centre ValBio
Ranomafana National Park, Madagascar
6 – 14 January, 2020
Thanks to our sponsors!
International Clinics on Infectious Disease, Dynamics, & Data
MMED: Clinic on the Meaningful Modeling of Epidemiological Data

May-June 2019, Cape Town, South Africa
International Clinics on Infectious Disease, Dynamics, & Data

MMED: Clinic on the Meaningful Modeling of Epidemiological Data
May-June 2020, Cape Town, South Africa

DAIDD: Clinic on Dynamical Approaches to Infectious Disease Data
December 2020, Stellenbosch, South Africa
International Clinics on Infectious Disease, Dynamics, & Data

MMED: Clinic on the Meaningful Modeling of Epidemiological Data
May-June 2020, Cape Town, South Africa

DAIDD: Clinic on Dynamical Approaches to Infectious Disease Data
December 2020, Stellenbosch, South Africa

South African Center for Epidemiological Modeling and Analysis (SACEMA),
Director
Dr. Juliet Pulliam
University of Stellenbosch

ICI3D, Program Director
Dr. Steve Bellan
University of Georgia
Goals for this lecture

• To explain what we’re doing here
Goals for this lecture

• To explain what we’re doing here
• To introduce the “E” and the “M” in E^2M^2
Goals for this lecture

• To explain what we’re doing here
• To introduce the “E” and the “M” in E^2M^2
 • Ecology
 • Epidemiology
Goals for this lecture
• To explain what we’re doing here
• To introduce the “E” and the “M” in E²M²
 • Ecology
 • Epidemiology
 • Modeling
 • Madagascar
All course materials are available at:

E2M2.org
Goals for this lecture

• To explain what we’re doing here
• To introduce the “E” and the “M” in E²M²
 • Ecology
 • Epidemiology
 • Modeling
 • Madagascar
Goals for this lecture

- To explain what we’re doing here
- To introduce the “E” and the “M” in E²M²
 - Ecology
 - Epidemiology
 - Modeling
 - Madagascar
What is an –ology?
What is an –ology?

• “the study of”
• “the science of”
What is an –ology?

• “the study of”
• “the science of”
• goal: to explain
Goals for this lecture

• To explain what we’re doing here
• To introduce the “E” and the “M” in E²M²
 • Ecology
 • Epidemiology
 • Modeling
 • Madagascar
What is Ecology?
What is Ecology?

• The study of the interactions of organisms and their environment
What is Ecology?

• The study of the interactions of organisms and their environment
 - Herodotus (c. 425 BC): Nile crocodiles open mouths for sandpipers
What is Ecology?

• The study of the interactions of organisms and their environment
 - Herodotus (c. 425 BC): Nile crocodiles open mouths for sandpipers
 - Term coined in 1866 by German scientist Ernst Haeckel
What is Ecology?

• The study of the **interactions of organisms and their environment**
 - Herodotus (c. 425 BC): Nile crocodiles open mouths for sandpipers
 - Term coined in 1866 by German scientist Ernst Haeckel

• Emphasis on explaining **dynamical processes** in nature
A Brief History of Ecology

1. Plant Biology
 - Clements (1905): ‘superorganism’
 - Gleason (1918): individualistic ecology
A Brief History of Ecology

1. Plant Biology
 - Clements (1905): ‘superorganism’
 - Gleason (1918): individualistic ecology

2. Population Biology
 - Charles Elton (1920s): food webs
 - Lotka-Volterra (1920s): predator-prey models
A Brief History of Ecology

1. Plant Biology
 - Clements (1905): ‘superorganism’
 - Gleason (1918): individualistic ecology

2. Population Biology
 - Charles Elton (1920s): food webs
 - Lotka-Volterra (1920s): predator-prey models

3. Mathematical Ecology
 - MacArthur (1950s): island biogeography
A Brief History of Ecology

1. Plant Biology
 - Clements (1905): ‘superorganism’
 - Gleason (1918): individualistic ecology

2. Population Biology
 - Charles Elton (1920s): food webs
 - Lotka-Voltera (1920s): predator-prey models

3. Mathematical Ecology
 - MacArthur (1950s): island biogeography

4. Disease Ecology
 - Anderson and May (1980s)
Goals for this lecture

• To explain what we’re doing here
• To introduce the “E” and the “M” in E^2M^2
 • Ecology
 • Epidemiology
 • Modeling
 • Madagascar
What is Epidemiology?
What is Epidemiology?

- “the study of what is on the people”
What is Epidemiology?

• “the study of what is on the people”
 – coined by Spanish physician Villalba in 1802
What is Epidemiology?

• “the study of **what** is on the people”
 – coined by Spanish physician Villalba in 1802

• Emphasis on the study and analysis of the distribution and determinants of health and disease (“risk factors”)
A Brief History of Epidemiology

1. **Four Humors**
 - Disease results from imbalance
 - Hippocrates (c. 400 BC)
A Brief History of Epidemiology

1. Four Humors
 - Disease results from imbalance
 - Hippocrates (c. 400 BC)

2. Miasmatic Theory of Disease
 - Disease results from emanations of ‘bad air’
 - Galen (140 AD)
A Brief History of Epidemiology

1. Four Humors
 - Disease results from imbalance
 - Hippocrates (c. 400 BC)

2. Miasmatic Theory of Disease
 - Disease results from emanations of ‘bad air’
 - Galen (140 AD)

3. Germ Theory of Disease
 - Disease results from ‘germs’
 - Leeuwenhoek’s microscope (1675)
 - Koch’s postulates (1890)
A Brief History of Epidemiology

1. Four Humors
 - Disease results from imbalance
 - Hippocrates (c. 400 BC)

2. Miasmatic Theory of Disease
 - Disease results from emanations of ‘bad air’
 - Galen (140 AD)

3. Germ Theory of Disease
 - Disease results from ‘germs’
 - Leeuwenhoek’s microscope (1675)
 - Koch’s postulates (1890)

4. Classical epidemiology
 - ‘Risk factors’
 - John Snow and London cholera (1854)
Applying Ecology and Epidemiology

• Applied Ecology = Conservation Biology
 - Goal: protect populations from extinction
Applying Ecology and Epidemiology

• Applied Ecology = Conservation Biology
 - Goal: protect populations from extinction
 - Approach: protected area reserves

Single Large or Several Small
4 acres 1 acre 1 acre
1 acre 1 acre
Applying Ecology and Epidemiology

• Applied Ecology = **Conservation Biology**
 - **Goal:** protect *populations* from *extinction*
 - **Approach:** protected area reserves
 - **Key Terms:**
 - **Minimal Viable Population** (MVP): minimum number of individuals sufficient to sustain 99% of population in 100 yrs
 - **Intrinsic growth rate** = r
 - **Finite population rate of increase** = λ
Applying Ecology and Epidemiology

• Applied Epidemiology = **Public Health**
 - **Goal**: protect **populations** from disease via pathogen **extinction**
Applying Ecology and Epidemiology

- **Applied Epidemiology = Public Health**
 - **Goal:** protect populations from disease via pathogen *extinction*
 - **Approach:** sanitation, quarantine, *vaccination*
Applying Ecology and Epidemiology

• Applied Epidemiology = **Public Health**
 - **Goal:** protect *populations* from disease via pathogen **extinction**
 - **Approach:** sanitation, quarantine, vaccination
 - **Key Terms:**
 - **Critical Community Size** (CCS): minimum number of hosts sufficient to sustain a pathogen indefinitely
 - **Basic Reproduction Number** = R_0
Goals for this lecture

• To explain what we’re doing here
• To introduce the “E” and the “M” in E²M²
 • Ecology
 • Epidemiology
 • Modeling
 • Madagascar
Misaotra!