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The goal of this session is to give you tools to  
(1) be able to do basic mathematics 
(2) understand equations in papers



Outline

❖ Greek letters

❖ Order of operations and parentheses

❖ Common mathematical notations

❖ Matrix operation

❖ Function

❖ Difference and differential equation



Greek letters

dx
dt

= rx ( x
αK

− 1) (1 −
x
K ) The one like the fishWhat is alpha?

Jody Reimer



Greek letters





Order of operation and parentheses

8 ÷ 2(2 + 2) = ?



Orders of operations

❖  

❖ In case of a doubt, always use parentheses

{ + , − } < { ⋅ , × , * , ÷ , :} < {^, power} < (), {}, []



Examples

❖ 1+ 1/2 + 3

❖ (1+1)/2 + 3

❖ 1+1/(2+3)

❖ (1+1)/(2+3)

❖ 1/2/3

❖ x+ y/2 + z

❖ (x+y)/2 + z

❖ x+y/(2+z)

❖ (x+y)/(2+z)

❖ x/2/z





Sums

❖

❖

❖

1 + 2 + 3 + 4 = ?

12 + 22 + 32 + 42 = ?

11 + 22 + 33 + 44 = ?



Sums

❖

❖

❖

4

∑
i=1

i = 1 + 2 + 3 + 4

4

∑
i=1

i2 = 12 + 22 + 32 + 42

4

∑
i=1

ii = 11 + 22 + 33 + 44



Products

❖

❖

❖

1 × 2 × 3 × 4 = ?

12 × 22 × 32 × 42 = ?

11 × 22 × 33 × 44 = ?



Products

❖

❖

❖

4

∏
i=1

i = 1 × 2 × 3 × 4 = 4!

4

∏
i=1

i2 = 12 × 22 × 32 × 42

4

∏
i=1

ii = 11 × 22 × 33 × 44



Some ideas

❖ Recognize dummy variables and don’t be afraid of them

❖ Notations should be intuitive and consistent





Matrix

•

•

M = [
1 2 0
0 4 1
0 −2 1]

M + α = α + M = ?

M ⋅ 2 = 2 ⋅ M = ?

• Matrix multiplication

•

•

• What is the R syntax?

[
1 2 0
0 4 1
0 −2 1] ⋅ [

1
2
0] = ?

[
1 2 0
0 4 1
0 −2 1] ⋅ [

1 1 1
2 0 0
0 0 0] = ?



Matrix

❖
Inverse of a matrix:   is   

❖ THERE IS NO MATRIX DIVISION 

❖
Identity matrix 

❖
Diagonal matrix  

❖
Transpose of a matrix: 

M = [
1 2 0
0 4 1
0 −2 1] M−1 =

1 −1/3 1/3
0 1/6 −1/6
0 1/3 2/3

Id = [
1 0 0
0 1 0
0 0 1]

M = [
3 0 0
0 2 0
0 0 1]

Mt = [
1 0 0
2 4 −2
0 1 1 ]



Eigenvectors and eigenvalues

❖

❖

❖

M ⋅ v1 = ?

M ⋅ v2 = ?

M ⋅ v3 = ?

M = [
1 2 0
0 4 1
0 −2 1] v1 = [

−1
−1
1 ] v2 = [

−2
−1
2 ] v3 = [

1
0
0]



Eigenvectors and eigenvalues

❖

❖

❖

M ⋅ v1 = 3v1

M ⋅ v2 = 2v2

M ⋅ v3 = 1v3

M = [
1 2 0
0 4 1
0 −2 1] v1 = [

−1
−1
1 ] v2 = [

−2
−1
2 ] v3 = [

1
0
0]



Eigenvectors and eigenvalues

M = [
1 2 0
0 4 1
0 −2 1] v1 = [

−1
−1
1 ] v2 = [

−2
−1
2 ] v3 = [

1
0
0]

If 

and   then  

V = [v1 v2 v3] = [
−1 −2 1
−1 −1 0
1 2 0]

Λ = [
3 0 0
0 2 0
0 0 1] M = V−1ΛV

❖

❖

❖

M ⋅ v1 = 3v1

M ⋅ v2 = 2v2

M ⋅ v3 = 1v3





Functions

f(x) =
x + 1

x2 + 2.5
 for x ∈ [−5,5]

With a minimal effort, you can use R to plot the 
curve of any function, what matters now is:  

Can you read/interpret the curve?
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Function properties

❖ Intercept/root(s)
❖ Positive/negative value
❖ Maximum/minimum value 
❖ Increasing/Decreasing/

Constant
❖ Concave/Convexe
❖ Asymptotic

f(x) =
x + 1

x2 + 2.5



x

f(x) and f'(x)

A function and its derivative
❖ What happen when the 

derivative is:
❖  negative?
❖ positive?

❖ zero?

❖ reaching a maximum (finite) 
value?

❖ Homework
❖ The derivative is increasing
❖ The derivative is decreasing
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Special functions
❖

❖

❖

❖

❖

❖

❖

❖

❖

f(x) = ln(x)

ln(ab) = ln(a) + ln(b)

ln ( a
b ) = ln(a) − ln(b)

ln(an) = n ln(a)

f(x) = ex

eaeb = ea+b

ea

eb
= ea−b

(ex)n = enx

ln(ex) = x ln(e) = x = eln(x)



–Fred R. Barnard

“A picture is worth a thousand words. ” 



–Fred R. Barnard and someone else

“A picture is worth a thousand words, 
but an equation is worth a thousand pictures ” 



Difference and differential 
equations



Difference equation (suite in french)

❖ Explicit: 

❖
E.g., 

❖ Implicit: 

❖ E.g., 

❖ Just write the code and you will see the behavior!!!

un = f(n)

un = 2n, un = en − log(n) +
sin(n2)

n + 2

un = f(un−1, un−2, …)

un = un−1 + bun−1 − dun−1



Differential equation

❖
 

❖ And more generally 

❖ The equation simply describes how x change when t 
change

dx
dt

= rx ( x
αK

− 1) (1 −
x
K )

dx
dt

= f(x)


