Model Fitting: The Basic Concept
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Traditional statistics is data-driven...

* We might ask questions about these data:

— What proportion of cases occurred in males vs.
females?

— In winter vs. spring?
— In Maradi vs. Dosso arrondisement?

* Goal: find correlations that imply causality
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Traditional statistics is data-driven...

* Goal: find correlations that imply causality

* I[magine you discover:

Proportion of cases
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Traditional statistics is data-driven...

* Goal: find correlations that imply causality
* I[magine you discover:
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Mechanistic modeling is process-driven...

 We want to understand what happened, when it
happened, and why it happened
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Mechanistic modeling is process-driven...

We want to understand what happened, when it
happened, and why it happened

Allows us to scale up from individual-level
processes to population-level patterns

We start by building a model that uses explicit
processes to recover the same outcomes
(“states”) as our data

What state variables are captured in our data?



These data give us infecteds over time...
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These data give us infecteds over time...
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What processes contribute to the

“infected” state in our system? o s
Infectious

Recovered




How to fit a model to data

1.

Build a model that uses explicit processes to
recover the same states as the data.

. Use any statistical tool (i.e. maximum

likelihood, least squares) to ask, assuming
our model is true, how likely are we to
recover the observed data?

. Optimize the parameters behind the

processes to make the model most likely to
recover the data.

If need be, restructure your model to better
match your data.



How to fit a model to data

1. Build a model that uses explicit processes to
recover the same states as the data.

Discrete time models are simple:
St+1 = St - beta*1+*St/N

lv1= |t + beta*1t*Si/N - gamma*l:

where beta = transmission coefficient and gamma = recovery rate



How to fit a model to data

1. Build a model that uses explicit processes to
recover the same states as the data.

If we set the timestep = 1/gamma, we can reduce the system to:
St+1 = St - beta®[:*S:/ N«

lt+1 = beta*lt*St/Nt

This means we make the assumption that there are no overlapping
infectious generations.



How to fit a model to data

1. Build a model that uses explicit processes to
recover the same states as the data.

l2= 11 + beta*[1*S1/N - gamma*I:

=1+ (2)(1)(9/10) - (1)(1)

S1 =9 persons
N=10

beta =.2 hour?
gamma = 1 hour!
At =1 hour
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How to fit a model to data

1. Build a model that uses explicit processes to
recover the same states as the data.

l2= 11 + beta*[1*S1/N - gamma*I:

= 1+(.2)(1)(9/10) - (1)(1)

S1 =9 persons
@ ( 2)(1)(9/10) @ Eefcalg.z hour

18 at 2 hours gamma = 1 hour!
cancelI At =1 hour

l2=1+(.2)(2)(1)(9/10) = (1)(1)(2) |52 s persons

) N=10
beta =.2 hour?
gamma =1 hour!
At = 2 hours




How to fit a model to data

1. Build a model that uses explicit processes to
recover the same states as the data.

l2= 11 + beta*[1*S1/N - gamma*I:

=1 (2000 -4,
@ ( 2)(1)(9/10) @ Eefcalg.z hour!
.18 at 2 hours gamma = 1 hour?
cancelI At =1 hour
»=1+(.2)(2)(1)(9/20) = (1)(1)(2)  [s.='persons
LD (2)2)(1)(9/10)
2 — ‘64 at 4 hours — \ i?f?f;a;ulrshour'l
Don’t cancel! "




How to fit a model to data

1. Build a model that uses explicit processes to

recover the same states as the data.
simA = det.SIR(par = ¢c(2000, 2.5))
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How to fit a model to data

1. Build a model that uses explicit processes to

recover the same states as the data.
simA = det.SIR(par = ¢c(2000, 2.5))
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Model does a
pretty good job,
but but it
overshoots our
data by

quite a bit.

What does this

suggest about our
guess for beta?



How to fit a model to data

2. Use any maximum likelihood to ask, assuming our
model is true, how likely are we to recover the
observed data?

beta_guess[which.min(ll)] = 2.3 0

3000

neg log-lik

1000




How to fit a model to data

2. Use any maximum likelihood to ask, assuming our
model is true, how likely are we to recover the
observed data?
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How to fit a model to data

3. Optimize the parameters behind the processes to
make the model most likely to recover the data.

out <- optim(par = c(2000, 2.5), S _
likelihood, ©
method = "Nelder-Mead", ? N
| = datScases) § § —
(/)] |
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How to fit a model to data

4. If need be, restructure your model to better
match your data.

600
|

measles cases
400
| |

z{0[0
|

o _loef

for (iin 1:100) {
stoch = stoch.SIR(par=c(2000,2.3)) 9 10 20 30 40 50

}
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Insights from fitting dynamic models: RO

* The basic reproduction number for a pathogen

* Defined as the number of new infections generated by

one existing infection in a completely susceptible host
population

* In these discrete time models, RO = beta
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Insights from fitting dynamic models: RO

* The basic reproduction number for a pathogen

* Defined as the number of new infections generated by

one existing infection in a completely susceptible host
population

* In these discrete time models, RO = beta
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Insights from fitting dynamic models: RO

* The basic reproduction number for a pathogen

* Defined as the number of new infections generated by

one existing infection in a completely susceptible host
population

* In these discrete time models, RO = beta
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Insights from fitting dynamic models: RO

* The basic reproduction number for a pathogen

* Defined as the number of new infections generated by

one existing infection in a completely susceptible host
population

* In these discrete time models, RO = beta
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Insights from fitting dynamic models:
R-effective

* The number of new infections generated by one

existing infection in a partially susceptible host
population

* Reff = RO*(S/N)
* Changes over time!
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Insights from fitting dynamic models:
R-effective

* The number of new infections generated by one

existing infection in a partially susceptible host
population

* Reff = RO*(S/N)
* Changes over time!

000 0, S 00
0 © o
o 0 0O o

o ©

R = (5)*(13/17) = 3.82



Insights from fitting dynamic models:
R-effective

* The number of new infections generated by one

existing infection in a partially susceptible host
population

* Reff = RO*(S/N)
* Changes over time!
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Insights from fitting dynamic models:
R-effective

* The number of new infections generated by one

existing infection in a partially susceptible host
population

* Reff = RO*(S/N)
* Changes over time!
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Insights from fitting dynamic models:
R-effective

* The number of new infections generated by one

existing infection in a partially susceptible host
population

* Reff = RO*(S/N)
* Changes over time!
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Insights from fitting dynamic models:
R-effective

* The number of new infections generated by one

existing infection in a partially susceptible host
population

* Reff = RO*(S/N)
* Changes over time!
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Insights from fitting dynamic models:

An epidemic spreads
when Reff > 1
and declines when
Reff<1
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Insights from fitting dynamic models:
Force of Infection

* Defined as the rate
at which
susceptibles
become infected O

e FOI = RO*(I/N)
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* Changes over time,
but constant across
each timestep week of year



Mechanistic modeling is process-driven...

 We want to understand what happened, when it
happened, and why it happened

* Allows us to scale up from individual-level
processes to population-level patterns

* We start by building a model that uses explicit
processes to recover the same outcomes
(“states”) as our data
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* Test “what if” scenarios not amenable to experimentation
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Mechanistic modeling is process-driven...

* Test “what if” scenarios not amenable to experimentation

What if each person exposed 50% more people?

Susceptible
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Mechanistic modeling is process-driven...

* Test “what if” scenarios not amenable to experimentation

What if we treated people and doubled the rate of recovery?
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Mechanistic modeling is process-driven...

* Test “what if” scenarios not amenable to experimentation

* Estimate parameters that are difficult to measure by fitting
models to available data
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Mechanistic modeling is process-driven...

* Test “what if” scenarios not amenable to experimentation

* Estimate parameters that are difficult to measure by fitting
models to available data

Estimate transmission rate or other model parameters
(with confidence intervals)
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Mechanistic modeling is process-driven...

* Test “what if” scenarios not amenable to experimentation

* Estimate parameters that are difficult to measure by fitting
models to available data

e Forecast forward in time
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Mechanistic modeling is process-driven...

Test “what if” scenarios not amenable to experimentation

Estimate parameters that are difficult to measure by fitting
models to available data

Forecast forward in time

Select between models of differing hypotheses

Model 1

HE
S =1 —(R # people

intervention
Model 2

s | — R




Mechanistic modeling is process-driven...

Estimate: time series of state variables/
parameters of interest =» DATA

Inference: Build model to recapture data. Fit to
optimize parameters and “infer” the process
underlying the data

Model assessment: Assess plausibility or model
comparison

End goal: explain observed patterns or predict



