Looking back: how far have we come?

Tanjona Ramiadantsoa

with materials form Calistus Ngonghala

Genesis

E²M²: Ecological and Epidemiological Modeling in Madagascar

January 13-20 & January 22, 2018 Centre ValBio, Ranomafana National Park & Institut Pasteur de Madagascar, Antananarivo

Applications available at: http://metcalflab.princeton.edu/e2m2-application/ Deadline: Wednesday, November 1, 2017

We are pleased to announce the second annual E^2M^2 : Ecological and Epidemiological Modeling in Madagascar clinic, to be held January 13-20, 2018 at Centre ValBio, Ranomafana National Park, Madagascar, with a mandatory closing session to follow at Institut Pasteur de Madagascar on January 22. The clinic will be a ten-day intensive workshop aimed to provide an introduction to the use of dynamical models in understanding ecological and epidemiological data.

Students will participate in a series of interactive lectures and computer-based tutorials and learn to fine-tune model-based research questions, develop clear model frameworks and corresponding equations, and fit models to real-world data. All students will work closely with peers and faculty to develop a research plan for an ongoing or existing project integrating dynamical modeling with data collection and/or analysis in a

Outline

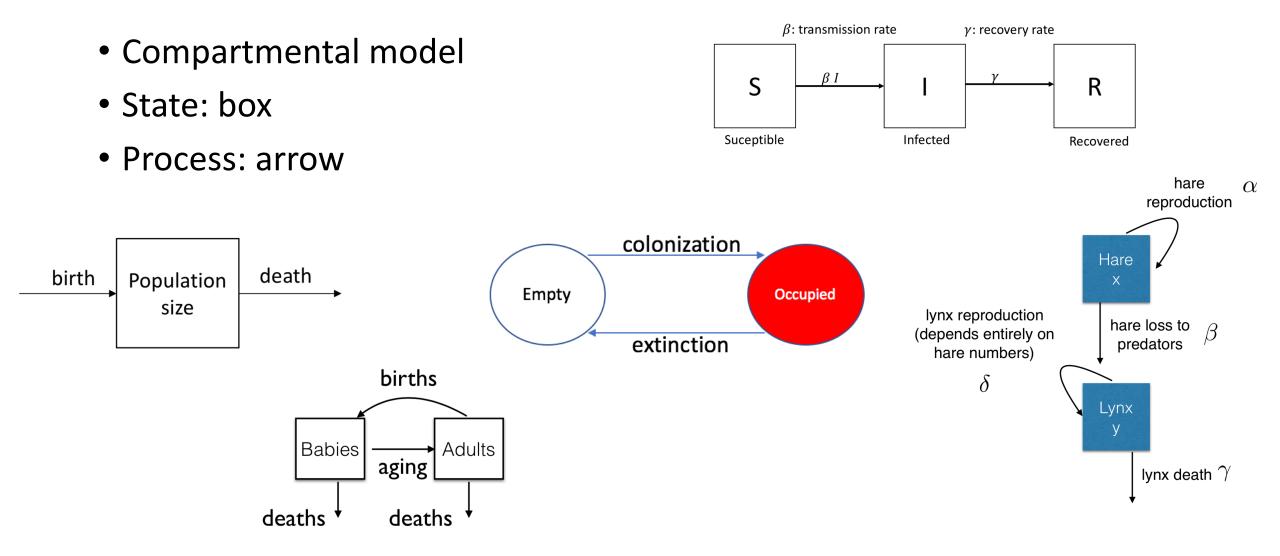
- Research question and interest
- Mechanistic model
- Statistical model
- R

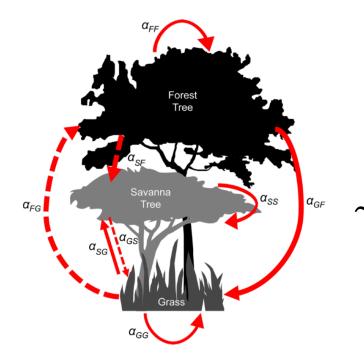
Research question

<u>Abstract</u> Title: "Modeling polymerization of branched actin filaments"

In this project we will construct Master equations and Fokker Planck equations for the stochastic process of the (de)polymerization of actin filaments. The basic case of a single straight filament with simplified dynamics was considered in class during the biological physics course. This project will extend this case to consider multiple (de)polymerizing filaments, stochastic nucleation of new filaments and filament branches. Where possible, the stochastic differential equations will be solved analytically. When this is not possible we will solve the equations numerically. The results will be compared to data from biochemistry experiments and stochastic simulations done by member of the team at the University of Sheffield.

Research question


How...? = mechanistic model


Does...? = statistical model

Mechanistic model: process-driven

Equivalence?

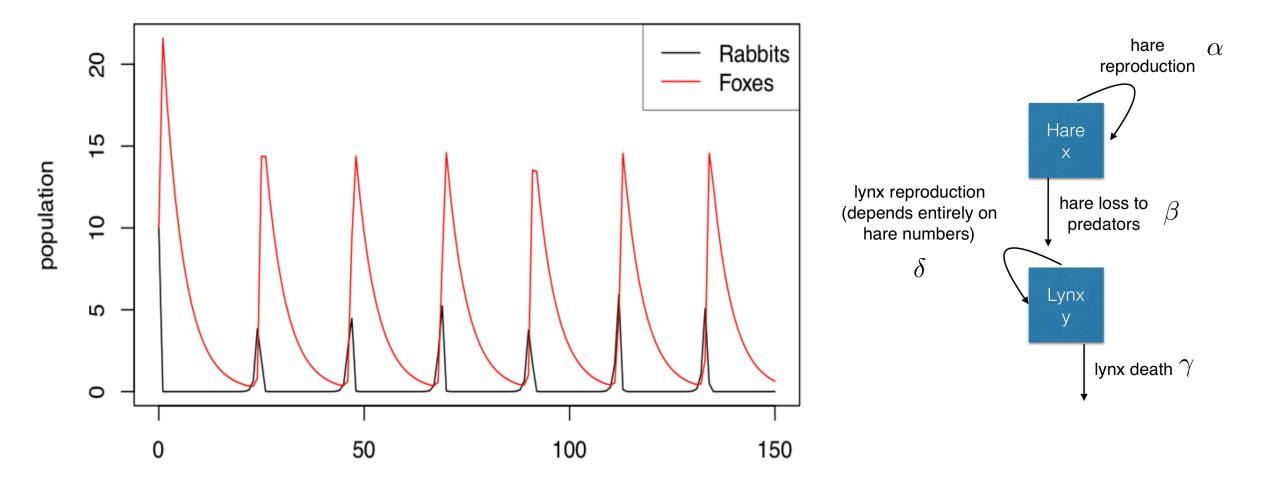
Figure 1. A pictorial representation of the model. *Thicker arrows* represent stronger limitation (larger competition coefficient values). The pathway of *different dashed arrows* represents a potential opportunity for savannas to facilitate their own growth via reduced limitation on grasses, which repels forest trees. For parameter definitions, see Table 1.

$$\mathrm{d}S/\mathrm{d}t = r_S S(1 - \alpha_{SG}G - \alpha_{SF}F - \alpha_{SS}S) + \xi_1$$

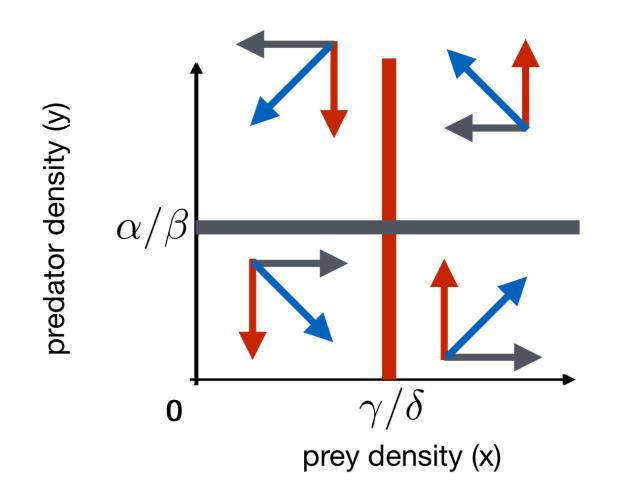
$$\mathrm{d}F/\mathrm{d}t = r_F F (1 - \alpha_{FG} G - \alpha_{FF} F) + \xi_2$$

$$\mathrm{d}G/\mathrm{d}t = r_S G(1 - \alpha_{GS} S - \alpha_{GF} F - \alpha_{GG} G) + \xi_3$$

The model is a formulation of the classic Lotka-Volterra competition model, with notation following Chesson (2000). The model aims to capture the dynamics of vegetation in areas with annual precipitation ranging from about 800-2000 mm, where savanna and forest potentially constitute alternative self-reinforcing states maintained primarily through differences in fire dynamics (for example, Sankaran and others 2005; Staver and others 2011). The model has three functional groups: grasses (G), savanna trees (S), and forest trees (F), and their abundance is expressed in terms of vegetation cover per unit ground at the spatial resolution of an area that would fit one fully grown forest tree and multiple individual grasses. We assume that cover is proportional to the size of a single tree in this patch. Together, the three groups do not necessarily sum to 100%, because vegetation can have multiple, overlapping layers and systems with more species often achieve greater biomass/cover than monocultures, through complementary use of resources or other mechanisms (Tilman and others 2014).


The dynamics of these three functional groups are given by the following three equations:

$$dS/dt = r_{S}S(1 - \alpha_{SG}G - \alpha_{SF}F - \alpha_{SS}S) + \xi_{1}$$
$$dF/dt = r_{F}F(1 - \alpha_{FG}G - \alpha_{FF}F) + \xi_{2}$$


 $\mathrm{d}G/\mathrm{d}t = r_S G(1 - \alpha_{GS} S - \alpha_{GF} F - \alpha_{GG} G) + \xi_3$

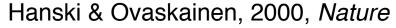
 r_{Sr} r_{Fr} , and r_G are maximum growth rates. α_{ij} are competition coefficients, representing the competitive effect of species j on species i, with larger values indicating that species j reduces species i's growth more. The α_{ii} coefficients, therefore, are self-limitation coefficients that can be interpreted as 1/carrying capacity. Each equation is also driven by independent additive Gaussian white noise ξ_{1-3} , accounting for sources of uncertainty associated with disease, herbivory, resource variability, and other stochastic factors (for example, Ridolfi and others 2011).

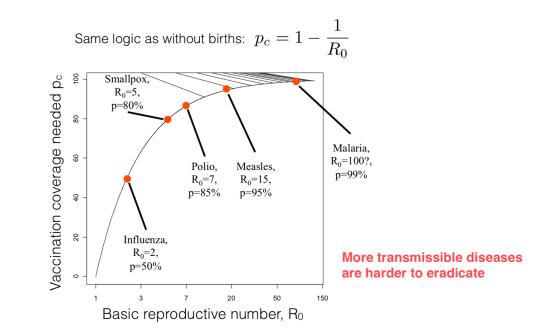
Analyses: forward simulation

Analyses: phase plane

Analyses: equilibrium

- Equilibria


$$\frac{dp}{dt} = 0 \iff cp (1-p) - ep = 0$$
$$\iff p^* = 0 \text{ or } p^* = 1 - \frac{e}{c}$$

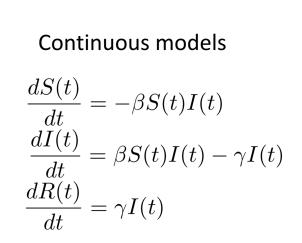

Insights

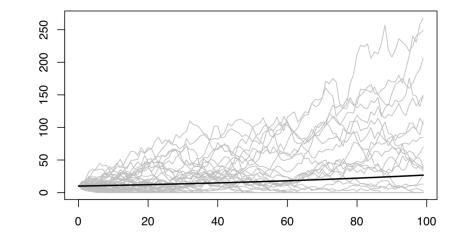
- Exponential increase
- Cyclic dynamic
- Extinction threshold
- Basic reproductive number R₀
- Effective reproductive number R_E
- Vaccination cover p_c

...

 $\begin{array}{c}
 0.8 \\
 0.6 \\
 0.4 \\
 0.2 \\
 -3 \\
 -2.5 \\
 -2 \\
 -1.5 \\
 -1 \\
 -0.5 \\
 0 \\
 Habitat availability$

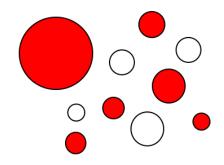
Families of models

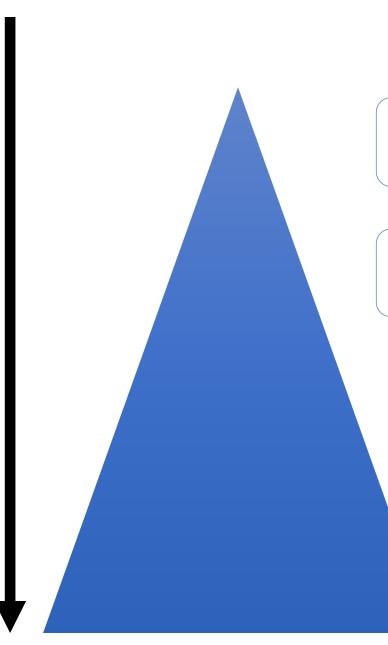

Spatial models


Discrete models

Deterministic and stochastic models

Structured population model


 $\mathbf{n_{t+1}} = \mathbf{A} \, \mathbf{n_t}$



Spatially implicit: homogenous

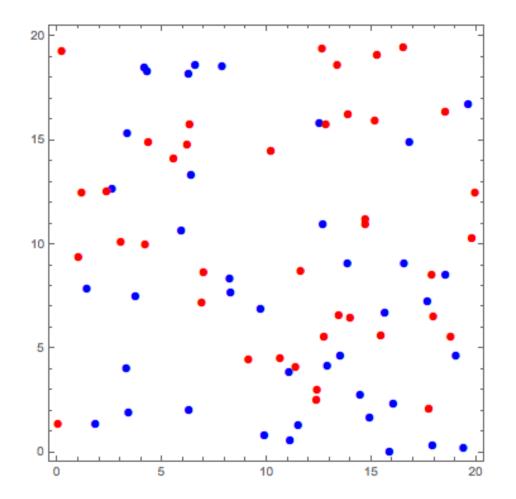
Spatially realistic: heterogeneous

Increasing complexity and realism ecreasing tractability

Degree of complexity

Deterministic models

(Continuous/Discrete)


Stochastic models

Meta-population/

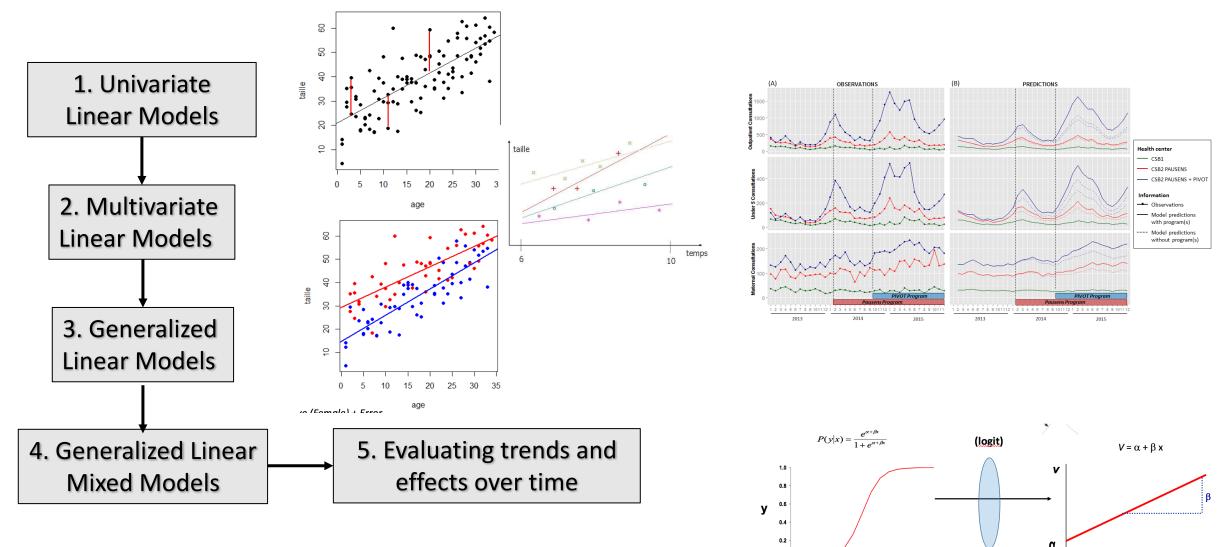
Network

Agent-based

Agent based: continuous landscape

Outline

- Science: research question
- Mechanistic model
- Statistical model
- R


Statistical modeling: data-driven

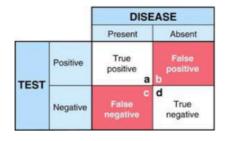
POSITIVE PROOF OF GLOBAL WARMING

Correlation does not imply causation

Regression families and assumptions

х

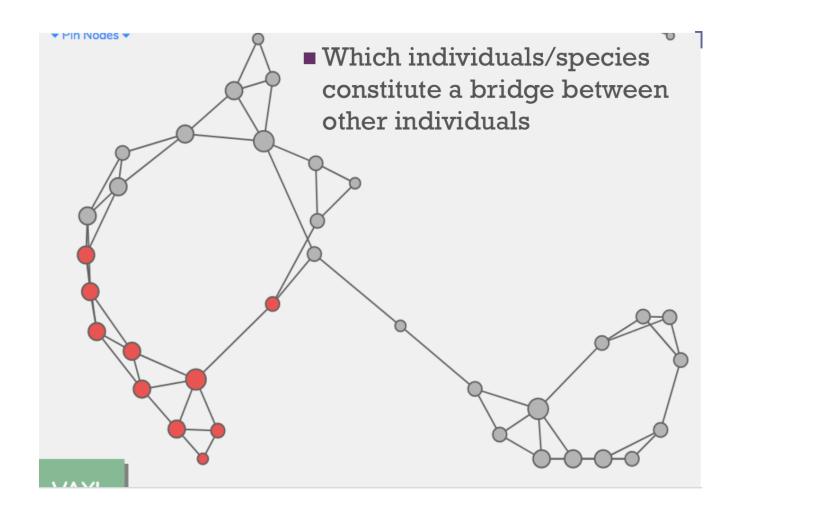
х

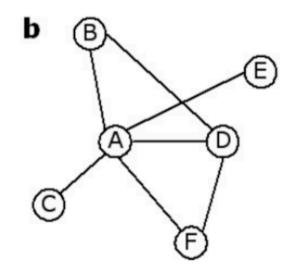

Occupancy model

ESTIMATE DISEASE PREVALENCE

Reality:

- · Most tests are imperfect
- Result in occupancy/prevalence estimates that are biased low
- Underestimation of pathogen transmission rates
- Flawed predictions regarding
 infection dynamics and

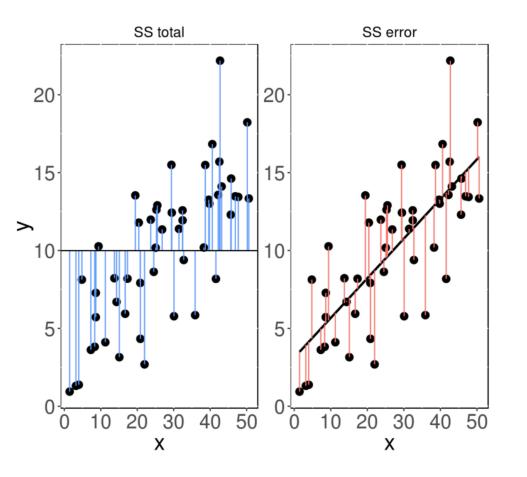




SINGLE SEASON OCCUPANCY

		Tested once	Occupancy
	n	Prevalence (95% CI)	
Galidia	29	0.48 (0.30- 0.67)	0.83 (0.65-1.00)
Galidictis	12	0.92 (0.60- 1.00)	1.00 (0.95-1.00)
Males	14	0.36 (0.14- 0.64)	0.79 (0.54-1.00)
Females	27	0.48 (0.29- 0.68)	0.94 (0.78-1.00)
Total	41	0.44 (0.29- 0.60)	0.89 (0.72-1.00)

Network



Individual	Degree
A	4
В	2
C	1
D	3
Е	1
F	2

Mechanistic models Univariate)ccupancy Decreasing tractibility ncreasing realism linear Multivariate linear Generalized linear models **Generalized linear** and mixed Network modeling

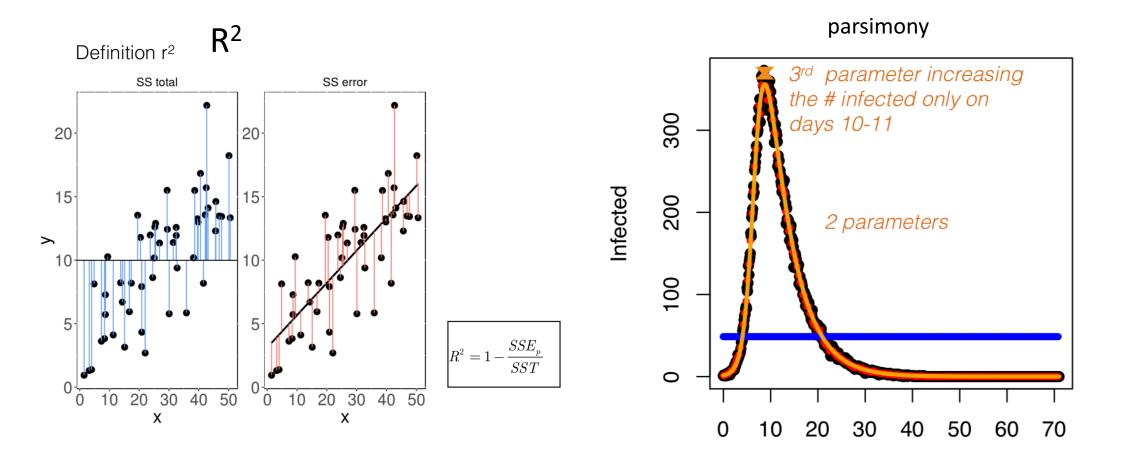
Model fitting

Least square

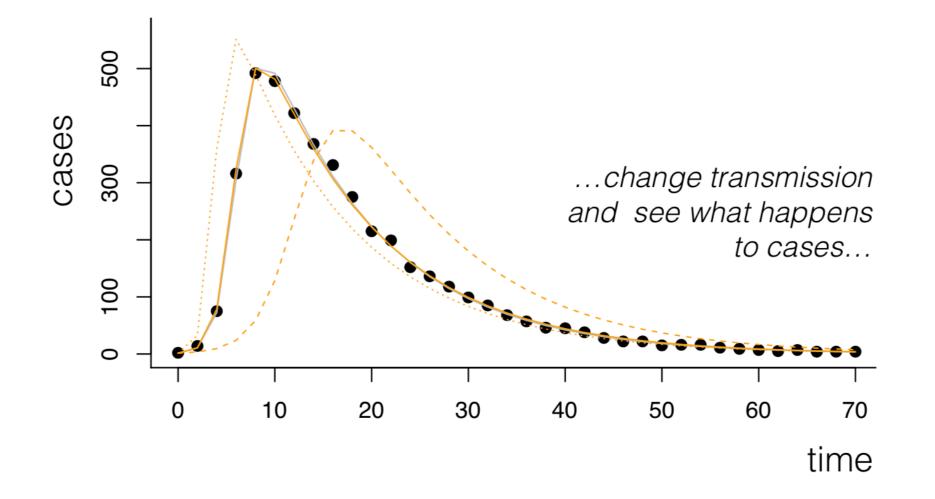
Maximum likelihood

Mathematical statements of all detection histories are combined into model likelihood, such as:

L(ψ, p H 1 ,..., H 30) =Π 30 i=1 Pr(Hi)


Product of math equations forms the model likelihood for the observed data

Using MLE determine Psi and p


Model fitting

Model evaluation and comparison

Sensitivity analyses

Outline

- Science: research question
- Mechanistic model
- Statistical model
- R

Basics

In R you can assign a value to a variable by using the "<-" operator.
Run the following line of code by pressing "Control+Enter"</pre>

x <- 10

(1242 - 241.1) * 32.21

When you press control+Enter, the cursor automat # in the console. This way, you can run scripts on # pressing control+enter.

The following code does some basic arithmetic.

x <- 2	<pre># ask someone to guess a number</pre>
y <- x*9	<pre># tell them to multiply it by 9</pre>
d1 <- floor(y/10)	<pre># get the first digit (floor(></pre>
d2 <- y‰10	<pre># get the second digit (a%%b gi</pre>
d1+d2-4	<pre># tell them to add the digits a</pre>

require("Matrix")

once you've included a package, you
package. You can click the name of a
help for that specific package. Here
package

```
M <- Matrix(0, 2, 2, sparse=FALSE)
M[1,1] = 2; M[1,2] = 3
M[2,1] = 3; M[2,2] = 4;
M
det(M)</pre>
```

Indeed we can make a new list by using the "c" (concatenate) command:

mylist <- c(1.1, 2.2, 3.3, 4.4, 5.5, 4.4, 3.3, 2.2, 1.1)

Intermediate

----Popdata, include=TRUE-----setwd("/Users/jessicametcalf/Downloads/E2M2-Dropbox-2018/E2M2.Metcalf.Lectures/Rcode/")
pop.data <- read.csv("WorldBankPop.csv")
head(pop.data[,1:10])</pre>

install.packages("dplyr")
install.packages("ggplot2")

Then load it with require() or library()

require(dplyr)
require(ggplot2)

> a + 1
Error: object 'a' not found
>

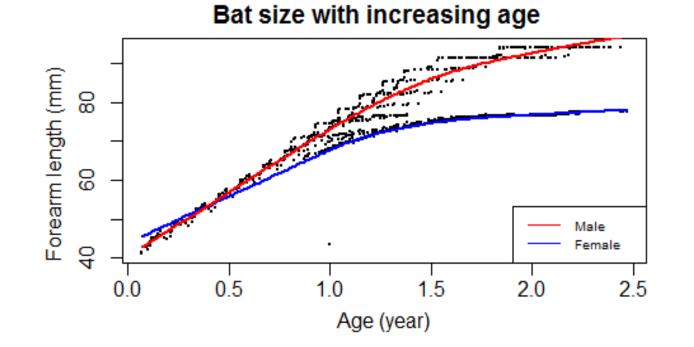
Intermediate

1. Data exploration: Plots and summary stadistics
#_____

Distribution of outcome variable
hist(csb.data\$outpatient, col='grey', main='',xlab='Number of outpatient visits per month')

Outpatient visits for each health center (exploration of association for categorical variables)
boxplot(csb.data\$outpatient~csb.data\$csb, ylab='Number of outpatient visits per month')

Outpatient visits after interventions were in place boxplot(csb.data\$outpatient~csb.data\$int1, ylab='Number of outpatient visits per month') boxplot(csb.data\$outpatient~csb.data\$int2, ylab='Number of outpatient visits per month')

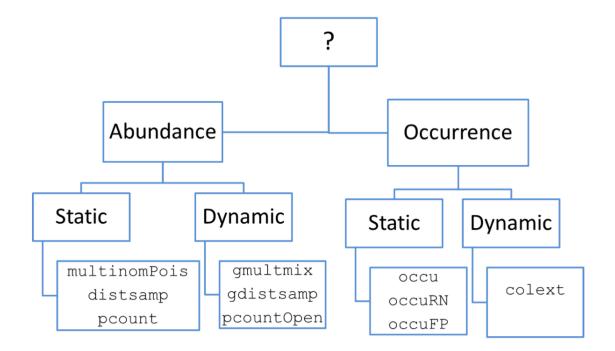

Correlation plots (exploration of association for quantitative variables)
plot(csb.data\$staff,csb.data\$outpatient, ylab='Number of outpatient visits per month')
abline(lm(outpatient~staff, data=csb.data))
plot(csb.data\$ref,csb.data\$outpatient, ylab='Number of outpatient visits per month')
abline(lm(outpatient~ref, data=csb.data))

We'll check a multivariate model that includes number of medicall staff and # (we don't consider a full model for simplicity and lack of sufficient observ m1=glmer.nb(outpatient~ staff+ int1+ int2+ season+ (1 | csb), data=csb.data) summary(m1)

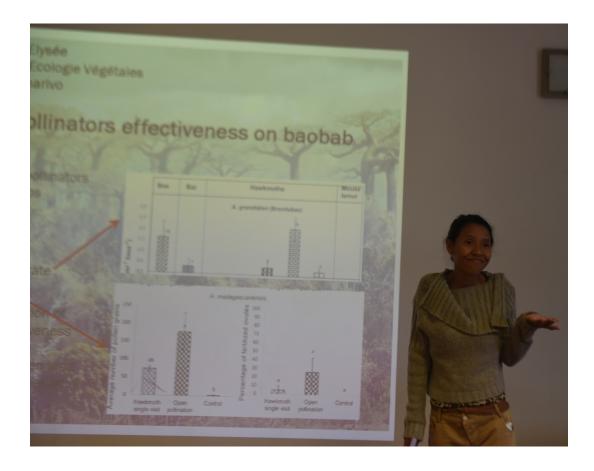
Intermediate


The variable "Number of parasites" is count data and it's poisson dist # This type of variable is typically modelled with poisson models m6=glm(GIparasites~age+sexe+malaria, family='poisson', data=lemur.data) summary(m6)

m7=step(m6)
summary(m7)



Advanced


Add dsolve for LV model

WHICH MODEL SHOULD I USE (UNMARKED)?

Project presentation and completion

- What are the main results that provide the answer to my question?
 - 1 to 3 graphs
 - 1 to 3 tables
- What is the journal that best fits my study?
 - Scope, audience, impact factor, math focus
- How do I present my manuscript?
 - Introduction: set the stage to your question
 - Methodology: describe explicitly all steps for replicability
 - Results: clear and concise
 - Discussion: explain how your study improves previous knowledge

You are now well equipped!

Any aminareo ny baolina!

