MODELING IN PRACTIVE: THE LIFE CYCLE OF A MODELING PROJECT, FROM CONCEPTION TO PUBLICATION

- The example of Buruli ulcer in Cameroon -

Andrés Garchitorena

Postdoctoral Fellow, Harvard Medical School

Research Manager, PIVOT Madagascar

E²M² Workshop Ranomafana, November 2016

Steps in a modeling project

- 1. Development of the study concept and question
- 2. Literature review
- 3. Data collection
- 4. Construction of model framework
- 5. Model analyses and selection
- 6. Model validation
- 7. Manuscript writing and submission

Types of modeling studies

Without data collection

- 1. Purely theoretical studies
- 2. Parametrization based on published studies
 - Systematic reviews and meta-analyses
 - Experimental and field studies

- 1. Development of the study concept
- 2. Literature Review
- 3. Data collection
- 4. Construction of model framework
 - Dynamic equations and code
 - Relationships between parameters
- 5. Model analyses and selection
 - Parametrization
 - Simulations and debugging
- Model validation
 - Model validation
 - Sensitivity analyses
- 7. Manuscript writing and submission

Types of modeling studies

- Development of the study concept
- 2. Literature Review
- 3. Data collection
- 4. Construction of model framework
 - Statistical vs. Mathematical model
 - Model better adapted to our data
- 5. Model analyses and selection
 - Descriptive, univariate and multivariate
 - Parametrization and simulations
- Model validation
 - Model validation, comparison
 - Sensitivity analyses
- 7. Manuscript writing and submission

With data collection

- Data already collected for other purposes
 - Focus only on analyses
 - Need to understand data limitations and quality
 - Need to adapt modeling to the available data
- 2. Data collected for the modeling project
 - Very time consuming
 - Modeling is generally more straightforward

THE EXAMPLE OF BURULI ULCER IN CAMEROON

Buruli ulcer

25% cases with functional limitations

Source of images: www.who.int (2014)

Buruli ulcer: an emergent and neglected disease

Cases in more than 30 countries

Focal distribution

1. LITERATURE REVIEW & IDENTIFICATION OF THE PROBLEM

Mycobacterium ulcerans: generalities

Buruli ulcer: a disease linked to aquatic ecosystems

BU Risk factors

Proximity to stagnant or slow flowing waters

Buruli ulcer: a mysterious disease

Buruli ulcer: socio-economic feedbacks

Stigma & Social isolation

Direct costs

Loss of employment & education

Socio-economic status

Buruli ulcer

Time to seek treatment

Exposure & vulnerability

2. STUDY DESIGN & OBJECTIVES

Objectives of the project

General objective

To gain insight on the links between ecological factors, human diseases and economic development, through the case study of Buruli ulcer disease.

Specific objectives

- 1 To understand the effects of environmental factors on *M.ulcerans* ecology
- To study the transmission of *M.ulcerans* from the aquatic environment to humans
- To understand the feedbacks between poverty and Buruli ulcer

Regions of study

Akonolinga

- • Landscape: Tropical rainforest
- •• Historically endemic area (>40 years)

Bankim

- •• Landscape: Savannah-Forest
- • New endemic area (10 years)

Marion et al. (2011, EID)

3. DATA COLLECTION & DESCRIPTIVE ANALYSES

Sample sites: Regions

Akonolinga

- ••16 water bodies
- • Samples once every month (x12)

Bankim

- ••16 water bodies
- • Samples once every three months (x4)

1. Fieldwork: Environmental sampling

2. Laboratory (CPC): Taxonomic identification & Pool composition

3. Laboratory (Angers): DNA extraction & Amplification

Characterization of MU in the environment

M. ulcerans geographical distribution

M. ulcerans distribution in freshwater ecosystems

Seasonal fluctuations of M. ulcerans in freshwater ecosystems

Seasonal fluctuations of M. ulcerans in freshwater ecosystems

4. STATISTICAL ANALYSES TO UNDERSTAND M. ULCERANS ECOLOGY

Methodology: Multi-model approach

Environmental drivers of *M. ulcerans:* Akonolinga

Variable	Avg.beta	Lower.CL	Upper.CL	Relative Importance	
(Intercept)	-13,66	-22,50	-4,82	1	
SEASONALITY					١
Sin(2pi*Mois/12)	0,35	0,02	0,69	1	
Sin(2pi*Mois/4)					
Cos(2pi*Mois/12)					
Cos(2pi*Mois/4)					

Environmental drivers of M. ulcerans: Bankim

Variable	Avg.beta	Lower.CL	Upper.CL	Relative.Importance		
(Intercept)	-10,13	-18,94	-1,32	1		
PHYSICO-CHEMICAL PARAMETERS						
Water Flow (lentic)	-1,91	-3,25	-0,57	1		
Water Flow (lotic)	-2,86	-4,38	-1,33	1		
рН	-5,52	-15,64	4,61	0,02		
Temperature						
Dissolved Oxygen						
Conductivity						
Comp3	0,24	-0,57	1,06	0,05		
Comp1	0,34	-0,24	0,92	0,02		
Comp2	-0,16	-0,85	0,53	0,01		

MU Positivity in Ecosystems

Why the two regions are so different?

VWater flow

↓pH (optimal)

↓02

Scenario 1: Favourable physico-chemical conditions

Free living stages &

Environmental transmission to aquatic organisms

Scenario 2: Adverse physico-chemical conditions

Mostly intra-host & Trophic transmission

5. MATHEMATICAL MODELING TO UNDERSTAND BU TRANSMISSION

Mathematical model framework

Estimation of Buruli ulcer cases (Temporal)

Incubation: 3 months

Time to seek treatment: 4 months

Estimation of Buruli ulcer cases (Temporal)

Incubation: 3 months

Time to seek treatment: 4 months

Estimation of Buruli ulcer cases (Temporal)

Incubation: 3 months

Time to seek treatment: 4 months

Transmission of MU to humans

Results for Buruli ulcer temporal dynamics

CONCLUSIONS

Development of the study concept

- What is your question?
- Why is it interesting?
- Who is interested?
- Can it be narrowed down to a question about specific quantitative relationships?

Literature review

- Who has tried to answer this before and how did they do it?
 - Empirical studies
 - Modeling studies
- What are these studies short-comings?
- Are there already parameter estimates or data sets to help you answer your question?

Data collection

- What do you need to characterize?
 - Spatial and/or temporal dynamics
 - Relationships between parameters or systems

Construction of model framework

- What drawbacks of previous studies can I mitigate?
- What type of modeling is necessary to answer my question?
 - Statistical: GLM, spatial, time-series, etc.
 - Mathematical: population based, individual based
- What modeling elements are necessary for my question?
 - Stochasticity
 - Compartments and complexity

Model analysis, selection and validation

- What model(s) best fit my data and explain my question?
 - Comparison of alternative models and application of selection procedures
- Does the selected model suffer from any substantial drawbacks?
 - Statistical models: verification of model assumptions
 - Mathematical models: sensitivity analyses and out-of-sample predictions

Manuscript writing and submission

- What are the main results that provide the answer to my question?
 - 1 to 3 graphs
 - 1 to 3 tables
- What is the journal that best fits my study?
 - Scope, audience, impact factor, math focus
- How do I present my manuscript?
 - Introduction: set the stage to your question
 - Methodology: describe explicitly all steps for replicability
 - Results: clear and concise
 - Discussion: explain how your study improves previous knowledge

MODELING IN PRACTIVE: THE LIFE CYCLE OF A MODELING PROJECT, FROM CONCEPTION TO PUBLICATION

- The example of Buruli ulcer in Cameroon -

Andrés Garchitorena

Postdoctoral Fellow, Harvard Medical School

Research Manager, PIVOT Madagascar

E²M² Workshop Ranomafana, November 2016

6. THEORETICAL MODELS TO UNDERSTAND FEEDBACKS WITH POVERTY

What about rare diseases like BU?

Human infections **Economic** development

Poverty Trap Formed by the Ecology of Infectious Diseases Bonds, Keenan, Rohani and Sachs (2009)

Population-based models

Tracks mean changes in the population

Individual-based models

Tracks information about each individual

Transmission probability (β) , probability and time to seek treatment (σ, ϵ) are a function of capital (M)

Recovery rate and probability of functional limitations (ζ) are a function of the time to seek treatment (1/ ϵ)

Cost of treatment &
Loss of productivity

Mean results for the whole population

Mean results for the whole population

Results for subgroups of the population

Results for subgroups of the population

Impact of strategies for disease control

Improved management

Impact of strategies for disease control

Impact of strategies for disease control

