MODELING IN PRACTIVE: THE LIFE CYCLE OF A MODELING PROJECT, FROM CONCEPTION TO PUBLICATION - The example of Buruli ulcer in Cameroon -

Andrés Garchitorena

Researcher, Institut de Recherche pour le Développement

Research Advisor, PIVOT Madagascar

E²M² Workshop Ranomafana, January 2018

- Steps in a modeling project
- 1. Development of the study concept and question
- 2. Literature review
- 3. Data collection
- 4. Construction of model framework
- 5. Model analyses and selection
- 6. Model validation
- 7. Manuscript writing and submission

Without data collection

- 1. Purely theoretical studies
- 2. Parametrization based on published studies
 - Systematic reviews and meta-analyses
 - Experimental and field studies

- 1. Development of the study concept
- 2. Literature Review
- 3. Data collection
- 4. Construction of model framework
 - Dynamic equations and code
 - Relationships between parameters
- 5. Model analyses and selection
 - Parametrization
 - Simulations and debugging
- 6. Model validation
 - o Model validation
 - o Sensitivity analyses
- 7. Manuscript writing and submission

Introduction

- 1. Development of the study concept
- 2. Literature Review
- 3. Data collection
- 4. Construction of model framework
 - o Statistical vs. Mathematical model
 - Model better adapted to our data
- 5. Model analyses and selection
 - Descriptive, univariate and multivariate
 - Parametrization and simulations
- 6. Model validation
 - Model validation, comparison
 - Sensitivity analyses
- 7. Manuscript writing and submission

With data collection

- 1. Data already collected for other purposes
 - Focus only on analyses
 - Need to understand data limitations and quality
 - Need to adapt modeling to the available data
- 2. Data collected for the modeling project
 - Very time consuming
 - Modeling is generally more straightforward

Introduction

THE EXAMPLE OF BURULI ULCER IN CAMEROON

.....

Most affected : Children <15 years

25% cases with functional limitations

Source of images: <u>www.who.int</u> (2014)

Introduction

Buruli ulcer: an emergent and neglected disease

Introduction

1. LITERATURE REVIEW & IDENTIFICATION OF THE PROBLEM

Mycobacterium ulcerans: generalities

BU Risk factors

Proximity to stagnant or slow flowing waters

Introduction

Buruli ulcer: a mysterious disease

Buruli ulcer: socio-economic feedbacks

ii

Introduction

2. STUDY DESIGN & OBJECTIVES

General objective

To gain insight on the links between ecological factors, human diseases and economic development, through the case study of Buruli ulcer disease.

Specific objectives

To understand the effects of environmental factors on M.ulcerans ecology

2

3

To study the transmission of *M.ulcerans* from the aquatic environment to humans

To understand the feedbacks between poverty and Buruli ulcer

Introduction

Regions of study

iii

Marion et al. (2011, EID)

Landier et al. (2014, PLoS NTDs)

Introduction

3. DATA COLLECTION & DESCRIPTIVE ANALYSES

1. Fieldwork: Environmental sampling

2. Laboratory (CPC): Taxonomic identification & Pool composition

3. Laboratory (Angers): DNA extraction & Amplification

M. ulcerans distribution in freshwater ecosystems

1

^{***} p < 0.001; Chi² Test

Garchitorena et al. (2014, PloS NTDs)

Seasonal fluctuations of M. ulcerans in freshwater ecosystems

1

Garchitorena et al. (2014, PloS NTDs)

--0

Seasonal fluctuations of *M. ulcerans in* freshwater ecosystems

1

Garchitorena et al. (2014, PloS NTDs)

4. STATISTICAL ANALYSES TO UNDERSTAND M. ULCERANS ECOLOGY

2 Methodology: Multi-model approach

Environmental drivers of M. ulcerans: Akonolinga

2

Environmental drivers of M. ulcerans: Bankim

2

MU Positivity in Ecosystems

Categories (Comp 1)

Variable	Av	g.beta	Lower.CL	Upper.CL	Relative.Importance
(Intercept)		10,13	-18,94	-1,32	1
PHYSICO-CHEMICAL PARAMETERS					
Water Flow (lentic)		·1,91	-3,25	-0,57	1
Water Flow (I	lotic)	-2,86	-4,38	-1,33	1
рН		-5,52	-15,64	4,61	0,02
Temperature					
Dissolved Oxy	rgen				
Conductivity					
Comp3		0,24	-0,57	1,06	0,05
Comp1		0,34	-0,24	0,92	0,02
Comp2		-0,16	-0,85	0,53	0,01
COMMUNITY					
da 101	a Water Flow			рН	
					<u> </u>
pt o T	l l		ν, Γ		
ata _N	·		ω		
ra 🧧			1		
، _و]			<u> </u>	*	
<u>ل</u> م			w		
ica	MU Absent	MU Presen	t	MU Absent	MU Present
ine	Disolved Oxygen			Temperature (°C)	
ne			8		
- ⁰ ,qc		1			
00(4 -		i	- 8 -		
chan -					-
ote_	, I		- 3		
			` ` `		
	MU Absent	MU Presen	it	MU Absent	MU Present

Why the two regions are so different?

2

Oxygen

pН Temperature 2 • Akonolinga Akonoling 0 Relative Frequency Relative Frequency Bankim 80 Bankim 0 0.6 0.4 0.2 8 4.5 5.0 5.5 6.0 6.5 7.0 22 24 28 26 30 Value Value Optimal *pH* for *MU* [5.8-6.5]

Scenario 1: Favourable physico-chemical conditions

✓Water flow✓O2✓pH (optimal)

Scenario 2: Adverse physico-chemical conditions

Mostly intra-host

Trophic transmission

5. MATHEMATICAL MODELING TO UNDERSTAND BU TRANSMISSION

Transmission of MU to humans

Temporal model

Month

Transmission of MU to humans

Transmission of MU to humans

Incubation: 3 months Time to seek treatment: 4 months

Incubation: 3 months Time to seek treatment: 4 months

Incubation: 3 months Time to seek treatment: 4 months

Transmission of MU to humans

Transmission of MU to humans

Results for Buruli ulcer temporal dynamics

3

.

CONCLUSIONS

- What is your question?
- Why is it interesting?
- Who is interested?
- Can it be narrowed down to a question about specific quantitative relationships?

- Who has tried to answer this before and how did they do it?
 - o Empirical studies
 - Modeling studies
- What are these studies short-comings?
- Are there already parameter estimates or data sets to help you answer your question?

- What do you need to characterize?
 - Spatial and/or temporal dynamics
 - Relationships between parameters or systems

Conclusions

- What drawbacks of previous studies can I mitigate?
- What type of modeling is necessary to answer my question?
 - Statistical: GLM, spatial, time-series, etc.
 - Mathematical: population based, individual based
- What modeling elements are necessary for my question?
 - \circ Stochasticity
 - Compartments and complexity

Model analysis, selection and validation

V

- What model(s) best fit my data and explain my question?
 - Comparison of alternative models and application of selection procedures
- Does the selected model suffer from any substantial drawbacks?
 - \circ $\;$ Statistical models: verification of model assumptions $\;$
 - o Mathematical models: sensitivity analyses and out-of-sample predictions

- What are the main results that provide the answer to my question?
 - 1 to 3 graphs
 - 1 to 3 tables
- What is the journal that best fits my study?
 - Scope, audience, impact factor, math focus
- How do I present my manuscript?
 - Introduction: set the stage to your question
 - Methodology: describe explicitly all steps for replicability
 - Results: clear and concise
 - Discussion: explain how your study improves previous knowledge

Conclusions

MODELING IN PRACTIVE: THE LIFE CYCLE OF A MODELING PROJECT, FROM CONCEPTION TO PUBLICATION - The example of Buruli ulcer in Cameroon -

Andrés Garchitorena

Researcher, Institut de Recherche pour le Développement

Research Advisor, PIVOT Madagascar

E²M² Workshop Ranomafana, January 2018

6. THEORETICAL MODELS TO UNDERSTAND FEEDBACKS WITH POVERTY

Poverty Trap Formed by the Ecology of Infectious Diseases Bonds, Keenan, Rohani and Sachs (2009)

Disease Prevalence.

Feedbacks between BU and poverty

Feedbacks between BU and poverty

Population-based models

Tracks mean changes in the population

Individual-based models

Tracks information about each individual

Recovery rate and probability of functional limitations (ζ) are a function of the time to seek treatment (1/ ϵ)

Transmission probability (β), probability and time to seek treatment (σ,ε) are a function of capital (M)

Feedbacks between BU and poverty

Cost of treatment & Loss of productivity

Feedbacks between BU and poverty

4 Mean results for the whole population

Feedbacks between BU and poverty

Feedbacks between BU and poverty

Feedbacks between BU and poverty

Results for subgroups of the population

4

....

Feedbacks between BU and poverty

Impact of strategies for disease control

4

Feedbacks between BU and poverty

Impact of strategies for disease control

4

Feedbacks between BU and poverty