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Discrete time Continuous time
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Continuous models can be discretized; discrete models can 
be approximated by continuous ones. The appropriate 
framing may depend on the data / question.
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Conservation and Management of a Threatened 
Madagascar Palm Species, Neodypsis decaryi, Jumelle 
JOELISOA RATSIRARSON,*~ JOHN A. SILANDER, JR.,* AND ALISON F. RICHARDt 
*Department of Ecology and Evolutionary Biology, 75 N. Eagleville Road, The University of Connecticut, Storrs, 
c r  06269, U.S.A. 
tYale School of Forestry and Environmental Studies, 205 Prospect Street, New Haven, CT 06520, U.S.A. 
,Current Address: Yale School of Forestry and Environmental Studies, 205 Prospect Street, New Haven, CT 
06520, U.S.A. 

Abstract: The dynamics o f  a remnant  population o f  the palm Neodypsis decaryi were characterized using a 
linear, stage-structured demographic model. This palm is a threatened keystone species restricted to a narrow 
ecological zone in southeastern Madagascar. The population showed high mortality rates in the early stages 
o f  the life cycle, followed by a period o f  lower adult mortality. Demographic results indicated that the popula- 
tion was either stable or increasing inside the r e s e r v e  (A  m close to 1.0). Sensitivity and elasticity analyses indi- 
cated that adult stage classes were the most sensitive to producing changes in population growth rates. Con- 
tinued biological monitoring is appropriate for  the long-term conservation management  o f  this palm inside 
the reserve. Outside the protected area the population appears to be declining rapidly, mainly because o f  an- 
thropogenic effects (especially f lre and grazing). I f  the conservation of Neodypsis decaryi is to be successful in 
the long term, then conservation methods must  be carried out in cooperation with local villagers, and the spe- 
cies should be managed as a renewable resource in situ and ex sit~ In situ conservation should include culti- 
vation o f  this species throughout its natural range and protection o f  the existing viable natural populations. 
Alternative conservation management practices, both ecologically and economically sustainable, may be use- 
fu l  to alleviate the human pressures on this renewable resource. I f  leaves of  N. decaryi are to be harvested by 
local people, we recommend restricting annual  harvesting to about 25% of  leaves per  tree per year. Based on 
sensitivity analysis, seed collection should be kept well below 95% o f  the yearly crop i f  harvesting is not to 
have a significant impact on population growth rates. 

Conservaci6n y manejo de la especie de palmera de Madagascar en peligro Neodypsts decaryi, Jumelle 
R e s u m e n :  Se caracteriz6 la din~mica de las poblaciones remanentes de la palmera Neodypsis decaryi 
usando un modelo demogr~fico lineal estructurado por  edades. Esta palmera es una especie clave en peligro 
restringida a una zona ecol6gtca angosta en el sudeste de Madagascar. La poblaci6n mostr6 altas tasas de 
mortalidad durante los estadfos tempranos del ciclo de vida seguidas de tasas mdm bajas para los estadios 
adultos. Los resultados demogrd~ficos indicaron que dentro de la reserva la poblaci6n permaneci6 estable o 
aument6 (A m cercano a 1.0). Los an~lisis de sensitividad y elasticidad indicaron que las classes correspon- 
dientes a los estadios adultos fueron las mdts sensibles siendo las principales responsables de cambios en los 
tasas de crecimiento poblacional. E1 monitoreo biol6gico continuado para los esfuerzos de manejo para la 
conservaci6n a largo plazo de esta palmera dentro de la reserva es apropiado. Fuera del d~rea protegida, la 
poblaci6n parece estar declinando rapidamente debido, principalmente, a los efectos antropog~nicos (espe- 
cialmente fuego y pastoreo). Para que la conservaci6n de Neodypsis decaryi sea exitosa la largo plazo, los 
m#todos de conservaci6n deben ser Ilevados a cabo en cooperaci6n con la poblaci6n local y la especie debe 
ser manejada como un recurso renovable tantoen en el lugar como fuera. La conservaci6n en el lugar debe 
incluir el cultivo de esta especie a lo largo de su dLrea natural de distribuci6n y la protecci6n de las poblacion- 
ens naturales viables existentes. Pr~cticas alternativas de manejo para la conservaci6n, sostenibles tanto 
econ6mica como ecol6gicamente, podrlan ser atiles para altviar las presiones humanas sobre este recurso 

Paper submitted August 31, 1994; revised manuscript accepted February 17, 1995. 
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Evolution in the hypervariable environment
of Madagascar
Robert E. Dewar*† and Alison F. Richard‡

*McDonald Institute of Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, England; and ‡Office of the
Vice-Chancellor, University of Cambridge, Cambridge CB2 1TN, England

Communicated by Henry T. Wright, University of Michigan, Ann Arbor, MI, June 29, 2007 (received for review August 26, 2005)

We show that the diverse ecoregions of Madagascar share one
distinctive climatic feature: unpredictable intra- or interannual
precipitation compared with other regions with comparable rain-
fall. Climatic unpredictability is associated with unpredictable pat-
terns of fruiting and flowering. It is argued that these features
have shaped the evolution of distinctive characteristics in the
mammalian fauna of the island. Endemic Herpestidae and Tenre-
cidae and members of five endemic primate families differ from
closely related species elsewhere, exhibiting extremes of ‘‘fast-
ness’’ and ‘‘slowness’’ in their life histories. Climatic features may
also account for the dearth of frugivorous birds and mammals in
Madagascar, and for the evolutionary prevalence of species with
large body mass.

climate ! life history ! unpredictability ! mammals

Recent field research on Madagascar has revealed related
vertebrates with both the fastest and slowest life histories.

How can such differences evolve under similar environmental
conditions? The unique natural communities of Madagascar are
famous, but efforts to explain their evolution are unsatisfactory.
We show here that the climates of Madagascar are distinctive,
with highly unpredictable rainfall, and argue that some of the
natural communities of the island represent evolutionary re-
sponses to this unusually variable climatic regime.

The communities of Madagascar are characterized by high
levels of endemicity, great species diversity in some taxonomic
groups, and a complete absence of others. These three features
are dramatically evident in the native nonflying mammals. The
four orders native to and widespread within Madagascar (Car-
nivora, Insectivora, Primata, and Rodentia) are all represented
by endemic genera or families. The only other Recent mammals
are the African bush pig (Potamochoerus larvatus), the extinct
pygmy hippopotamus species (Hippopotamus spp.), and the
poorly known and extinct Plesiorycteropus. Groups widely dis-
tributed elsewhere, such as the canids, felids, cervids, bovids, and
anthropoid primates, are absent. Successful colonization by
mammals has been rare (1). The high level of endemicity has
been attributed to the long isolation of the island from other
continents. This isolation predates the evolution of most recent
families of mammals, and the limited suite of Malagasy mammals
has been attributed to chance dispersals across the Mozambique
Canal over the past 70 million years (1, 2).

The Malagasy fauna exhibit other distinctive features not
readily explained by isolation. For example, the biological pe-
culiarities of the primates of Madagascar have been widely noted
(3). The extreme seasonality and unpredictability and frequent
tropical cyclones of Madagascar have been invoked to explain
these peculiarities and relate them to a special need to conserve
energy (3, 4). However, Madagascar does not exhibit an unusual
degree of seasonality (5), and, lacking comparative evidence
until now, there has been no assessment of the unpredictability
of the climate of Madagascar compared with other landmasses.

Several authors (6, 7) also have remarked on the low number
of frugivorous species of birds and mammals in Madagascar. In
other tropical communities, the dominant arboreal frugivores

are primates; however, in Madagascar, there are very few
medium- to large-sized frugivorous lemurs, and the proportion
of fruit in the diets of extant Malagasy lemurs is low compared
with other primate communities (8). With decreasing body mass,
primate species tend to include more fruit and less foliage in
their diet, but medium-sized lemurs (down to 1 kg body mass)
tend to be folivorous rather than frugivorous (5).

Madagascar: Environmental Variation
Year-to-Year Variability. Dewar and Wallis (9) examined interan-
nual variation in rainfall on tropical landmasses. Of a global
sample of 1,492 stations, only two stations were in Madagascar.
To explore patterns of interannual rainfall variability in Mada-
gascar, we sought additional monthly rainfall data (Global
Historical Climatological Network version 2; www.ncdc.noaa.
gov/oa/climate/research/ghcn/ghcngrid.html) (Table 1). Fig. 1
shows the geographical distribution of interannual rainfall vari-
ability at 15 Malagasy stations. In the north and the southwest
were regions with unusually high interannual variation. All of the
other regions fell within the global midrange spread identified by
Dewar and Wallis (9), but most western stations showed more
interannual variation than the median, and eastern regions
somewhat less. Thus, some regions of Madagascar differ mark-
edly from global distributions, but unusual interannual variabil-
ity in rainfall is not a general characteristic of the island.

Predictability of Monthly Rainfall. Colwell (10) proposed a method
for examining the predictability (P) of periodic phenomena and
used monthly rainfall patterns as an illustration. P falls on a scale
of 0 to 1, with higher values representing greater predictability.
P is the sum of C and M, where C is a measure of constancy (in
our case, the extent to which rainfall is constant and thereby
predictable) from month to month, and M is a measure of
contingency (the extent to which rains fall in similar amounts in
each month from year to year).

P was calculated for the 15 sites in Madagascar. We selected
a matching sample of stations from the nearly 600 continental
African stations used by Dewar and Wallis (9). For each
Malagasy station, we selected the African station with the mean
annual rainfall closest to it (Table 1). P did not covary positively
with the length of the climate record in the total sample (r !
0.108, P ! 0.571) nor in either the continental (r ! 0.403, P !
0.136) or Malagasy (r ! 0.198, P ! 0.479) subsets. P was,
however, significantly different for the African and Malagasy
samples (F1,28 ! 28.68, P " 0.0001): continental stations were,
as a group, much more predictable than those in Madagascar. In
Madagascar, P covaried positively with mean annual rainfall (r !

Author contributions: R.E.D. designed research; R.E.D. performed research; R.E.D. and
A.F.R. analyzed data; and R.E.D. and A.F.R. wrote the paper.

The authors declare no conflict of interest.
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Stochasticity matters for statistical design, and projecting 
future population growth…. 

It has been suggested that it might also have been a key 
element in the evolution of the unique fauna and flora of 
Madagascar. 



Key concepts

-Continuous vs. discrete models

-Deterministic vs. stochastic models

-Structured models
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 SOME ASSUMPTIONS
  • the lynx is totally dependent on a single prey 

species (the hare) as its only food supply, 
 • the hare has an unlimited food supply, 
 • there is no threat to the hare other than the 

specific predator.
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Key concepts

-Inter-dependence of species’ demography (here, we 
considered predation, but competition is also possible) 

-Internal cycles can be driven endogenously

-Finding the null-clines (where there is no change) can be 
helpful for predicting or understanding dynamics. 

-Many assumptions in this simple framework! And a number 
of aspects can be added to map this closer to real systems. 
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S I R

Easiest infections to stylize… completely immunizing viruses. 
Replicate inside the host = no dose dependence 
Immunizing =  once you recover, recovered forever.  

Measles, mumps, rubella

susceptible infected recovered

The SIR model



S I R
infection recovery

What are the big assumptions here? 

The SIR model

susceptible infected recovered
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�
�



S I R
infection recovery

What will the dynamics look like? 

The SIR model

	 Parameters	

	 	 :	infection	or	transmission	rate	per	contact	

	 	 :	rate	of	recovery
�
�

dS(t)

dt
= ��S(t)I(t)

dI(t)

dt
= �S(t)I(t)� �I(t)

dR(t)

dt
= �I(t)
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The SIR model: dynamics
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??Epidemic ends even though there 
are still some susceptibles….

The SIR model: dynamics



!has to be bigger than 1 for infection to spread!

A magic number: the average number of persons infected by an 
infectious individual when everyone is susceptible (start of an epidemic)

The SIR model: insights

	 Parameters	

	 	 :	infection	or	transmission	rate	per	contact	

	 	 :	rate	of	recovery
�
�

R0 = �/�



A magic number: the average number of persons infected by an 
infectious individual when everyone is susceptible (start of an epidemic)

A related value: what you get in a population where the infection is 
circulating.

RE = R0S

!has to be bigger than 1 for infection to spread!

!has to be bigger than 1 for infection to be spreading

The SIR model: insights

R0 = �/�

	 Parameters	

	 	 :	infection	or	transmission	rate	per	contact	

	 	 :	rate	of	recovery
�
�
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RE = R0S

RE = 1

When RE<1; the outbreak declines; 
infectious individuals are infecting 
less than 1 susceptible individual.

The SIR model: insights
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RE >1 RE <1

The SIR model: control
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Proportion that needs to 
be vaccinated to interrupt 
transmission

RE >1 RE <1

RE = R0S

pc = 1� 1

R0

The SIR model: control



S I R

births

infection recovery

mortality

vaccination, p

Moving beyond a ‘closed’ population

dS(t)

dt
= µ(1� p)� �S(t)I(t)� µS(t)

dI(t)

dt
= �S(t)I(t)� I(t)

D
� µI

µ

µ

WHO website

The SIR model: extensions



S I R

births

infection recovery

mortality

vaccination, p

Moving beyond a ‘closed’ population

µ

µ

WHO websiteWhat is likely to be the BIGGEST dynamical difference? 

The SIR model: extensions

dS(t)

dt
= µ(1� p)� �S(t)I(t)� µS(t)

dI(t)

dt
= �S(t)I(t)� �I(t)� µI



Moving beyond a ‘closed’ population
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The SIR model: extensions
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Influenza, 
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More transmissible diseases 
are harder to eradicate

pc = 1� 1

R0
Same logic as without births: 
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The SIR model: eradication



Measles across various cities in the UK 

Bjornstad, Finkenstadt Grenfell, 2002, Ecological monographs 

Peaks every year, or every other year; more erratic in smaller places. 
NOTHING LIKE the SIR with births

The SIR model: data



Measles across various cities in the UK 

Bjornstad, Finkenstadt Grenfell, 2002, Ecological monographs 

Peaks every year, or every other year; more erratic in smaller places. 

What else might be happening?  

The SIR model: data



E[It+�] = �s It St

Bjornstad, Finkenstadt Grenfell, 2002, Ecological monographs 
Ferrari et al., 2008 Nature

Explore using regression techniques, based 
around the generation time of infection

1. Seasonal fluctuations in transmission. 

E[ln(It+�)] = ln(�s) + ln(It) + ln(St)

The SIR model: extensions to match data



E[It+�] = �s It St

Bjornstad, Finkenstadt Grenfell, 2002, Ecological monographs 
Ferrari et al., 2008 Nature

England & Wales

Niger

Explore using regression techniques, based 
around the generation time of infection

1. Seasonal fluctuations in transmission. 

E[ln(It+�)] = ln(�s) + ln(It) + ln(St)

Functionally, seasonal variation in transmission will 
actually be shaped by changes in social networks 
linked to school terms, or rainfall, rather than the 
drivers themselves. 

The SIR model: extensions to match data



Earn et al. 2000, Science 

2. Demographic changes Lower birth rates drive 
biennial dynamics

The SIR model: extensions to match data
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3. Demographic “noise” Smaller cities have more 
irregular dynamics. 

The SIR model: extensions to match data



3. Demographic “noise” Smaller cities go extinct 
more often

Critical 
Community 

Size

Smaller cities tend to be “stochastically forced” by larger cities (like 
London) where the infection persists. 

Grenfell et al., 2001, Nature

The SIR model: extensions to match data



Grenfell et al., 2002, Ecological Monographs

The SIR model: extensions to match data



Key concepts

-SIR models essentially resemble predator-prey dynamics

-For simple infections that fit the SIR template, adding 
demography and seasonality can allow development of 
models that closely resemble observed systems. 


