O P
OFFICE OF POPULATION RESEARCH

Introduction to compartmental models

C. Jessica E. Metcalf
cmetcalt@princeton.edu


mailto:cmetcalf@princeton.edu




http://xkcd.com/1331/



Madagascar
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Discrete time Continuous time
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population size, N

Discrete time Continuous time
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population size, N
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population size, N

Discrete time Continuous time
® dP(t)/dt = rP(t)
Separation of variables:
@ dP(t)/P(t) = r dt
Integrate both sides:
@ —
A= Nyt /N; J dP(t)/P(t) = [ r dt
o By definition:
log(P(t)) = rt + ¢
time
Take exponentials:
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population size, N
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Discrete time Continuous time
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Continuous models can be discretized; discrete models can
be approximated by continuous ones. The appropriate
framing may depend on the data / question.
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Conservation and Management of a Threatened
Madagascar Palm Species, Neodypsis decaryi, Jumelle

JOELISOA RATSIRARSON,*} JOHN A. SILANDER, JR.,* AND ALISON F. RICHARD

*Department of Ecology and Evolutionary Biology, 75 N. Eagleville Road, The University of Connecticut, Storrs,
CT 06269, U.S.A. '

1Yale School of Forestry and Environmental Studies, 205 Prospect Street, New Haven, CT 06520, U.S.A.
$Current Address: Yale School of Forestry and Environmental Studies, 205 Prospect Street, New Haven, CT
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Assumes no role of chance
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starting population if deterministic
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starting population if deterministic
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starting population if deterministic

<§ <§ <§ > If you test your 10 ducks
ﬁ <§ . many times, on average

@ <§ probability of you get 5
survival = 0.5

SR s

\/

rbinom(200,1000,0.5) rbinom(200,10,0.5)

If you have lots of ducks, (here
1000) the variance across
many repeat tests is small -
deterministic predictions may
approximate reality.
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0 200 400 600 800 1 2 3 4 5 6 7 8

N surviving ducks N surviving ducks



Stochasticity matters for statistical design, and projecting
future population growth....

It has been suggested that it might also have been a key
element in the evolution of the unique fauna and flora of

Madagascar.

Evolution in the hypervariable environment
of Madagascar

Robert E. Dewar*T and Alison F. Richard?*

*McDonald Institute of Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, England; and *C ~~
Vice-Chancellor, University of Cambridge, Cambridge CB2 1TN, England ’

Communicated by Henry T. Wright, University of Michigan, Ann Arbor, MI, June 29, 2007 (received for review August 26, 2005)

We show that the diverse ecoregions of Madagascar share one
distinctive climatic feature: unpredictable intra- or interannual
precipitation compared with other regions with comparable rain-
fall. Climatic unpredictability is associated with unpredictable pat-
terns of fruiting and flowering. It is argued that these features

S PN AS




Key concepts

-Continuous vs. discrete models

-Deterministic vs. stochastic models

-Structured models
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lynx reproduction
(depends entirely on
hare numbers)

0

hare '8
reproduction

haredlotss to
o o
W~ p(a o)
% = —y(y — o)
l lynx death 7Y
SOME ASSUMPTIONS

¢ the lynx is totally dependent on a single prey
species (the hare) as its only food supply,

e the hare has an unlimited food supply,

e there is no threat to the hare other than the
specific predator.
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Phase plane plot: Lotka-Volterra model
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What happens if no change in rabbit (prey) population?

r=0 or:

dx
— = (0 means that either: v — By = 0

dt

y=a/b Constant predators




dx

i r(a — By)
dy
ar —y(y — ox)

What happens if no change in rabbit (prey) population?

r=0 or:

dx

— = 0 means that either: o — By = ()

y=a/b Constant predators

What happens if no change in lynx (predator) population?
y=0 or

d
4 _ 0 means that either: v —o0x = 0

dt

Tr ="y / 0 Constant prey




predator density (y)

What happens to the prey?

prey density (X)

predator density (y)

What happens to the predators?

prey density (X)




predator density (y)

What happens to the prey?

Constant
prey

prey density (X)

predator density (y)

What happens to the predators?

Constant
bredators

/0
prey density (x)




predator density (y)

What happens to the prey?

prey density (X)

predator density (y)

What happens to the predators?
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Key concepts

-Inter-dependence of species’ demography (here, we
considered predation, but competition is also possible)

-Internal cycles can be driven endogenously

-Finding the null-clines (where there is no change) can be
helpful for predicting or understanding dynamics.

-Many assumptions in this simple framework! And a number
of aspects can be added to map this closer to real systems.



pOX Virus

cholera

SIR models

brucella

The Ebola
Virus
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The SIR model

susceptible infected recovered

Easiest infections to stylize... completely immunizing viruses.
Replicate inside the host = no dose dependence
Immunizing = once you recover, recovered forever.

Measles, mumps, rubella



The SIR model

susceptible infected recovered

. — I — ry“

What are the big assumptions here?



The SIR model

infection recovery
everyone is either: S
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everyone is either:

people mix
uniformly
(mass action)



The SIR model
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The SIR model

everyone is either:

infection

people mix
uniformly
(mass action)

no latent period
(infectious when infected)

recovery

population size
constant - no births
or deaths, migration

recovery is
permanent



The SIR model

Parameters

6 : infection or transmission rate per contact

7Y :rate of recovery

everyone is either:

infection

people mix
uniformly
(mass action)

no latent period
(infectious when infected)

recovery

population size
constant - no births
or deaths, migration

recovery is
permanent



The SIR model

Parameters
6 : infection or transmission rate per contact

7Y :rate of recovery

. — I — ry“
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diit) =I(1)

What will the dynamics look like?



The SIR model: dynamics
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The SIR model: dynamics
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??Epidemic ends even though there
are still some susceptibles....



The SIR model: insights

A magic number: the average number of persons infected by an
infectious individual when everyone is susceptible (start of an epidemic)

R() — 6/”}/ lhas to be bigger than 1 for infection to spread!

Parameters
6 : infection or transmission rate per contact

7Y :rate of recovery



The SIR model: insights

A magic number: the average number of persons infected by an
infectious individual when everyone is susceptible (start of an epidemic)

R() — 6/”}/ lhas to be bigger than 1 for infection to spread!

A related value: what you get in a population where the infection is
circulating.

RE — ROS lhas to be bigger than 1 for infection to be spreading

Parameters
6 : infection or transmission rate per contact

7Y :rate of recovery



The SIR model: insights
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When Re<1; the outbreak declines;
infectious individuals are infecting
less than 1 susceptible individual.



The SIR model: control
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The SIR model: control

0.2 0.4 0.6 0.8 1.0
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The SIR model: extensions

Moving beyond a ‘closed’ population

births 1

vaccination, p ¢
infection recovery
mortality [/




The SIR model: extensions

Moving beyond a ‘closed’ population

births 1

vaccination, p ¢
infection recovery
mortality [/

B _ (1~ p) - BSWIW) — S

D _ ss(t)1(t) ~1(0) 1

What is likely to be the BIGGEST dynamical difference?



The SIR model: extensions

Moving beyond a ‘closed’ population
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Can get persisting infection (doesn'’t just go extinct)



The SIR model: eradication

Same logic as without births: P
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Malaria,
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More transmissible diseases
are harder to eradicate



The SIR model: data

Measles across various cities in the UK
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NOTHING LIKE the SIR with births

Bjornstad, Finkenstadt Grenfell, 2002, Ecological monographs
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The SIR model: data
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The SIR model: extensions to match data

1. Seasonal fluctuations in transmission.

Explore using regression techniques, basead
around the generation time of infection

Elli1s] = Bs It S
Elln(l;is)] = In(Bs) + In(1;) + In(.Sy)

Bjornstad, Finkenstadt Grenfell, 2002, Ecological monographs
Ferrari et al., 2008 Nature



The SIR model: extensions to match data

1. Seasonal fluctuations in transmission.

Explore using regression techniques, basead
around the generation time of infection

Elli1s] = Bs It S
Elln(l;is)] = In(Bs) + In(1;) + In(.Sy)

Functionally, seasonal variation in transmission will
actually be shaped by changes in social networks
inked to school terms, or rainfall, rather than the
drivers themselves.

Seasonal deviation in log(p)
o

England & Wales

0.4 1

0.3 1

B
U — U L

Jan Dec
2-wk period

Bjornstad, Finkenstadt Grenfell, 2002, Ecological monographs

Ferrari et al., 2008 Nature




The SIR model: extensions to match data

2. Demographic changes Lower birth rates drive
biennial dynamics
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The SIR model: extensions to match data

3. Demographic “noise” Smaller cities have more
So00 - irregular dynamics.
London (3,250,000)
7000 - Liverpool (750,000) ”
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The SIR model: extensions to match data

3. Demographic “noise” Smaller cities go extinct
more often

Critical
Community

ratio of zeros

0.5 Sie |
| WY
¢ 8 10 12 14
log(population)

Smaller cities tend to be “stochastically forced” by larger cities (like
London) where the infection persists.

Grenfell et al., 2001, Nature



The SIR model: extensions to match data
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Grenfell et al., 2002, Ecological Monographs



Key concepts

-SIR models essentially resemble predator-prey dynamics

-For simple infections that fit the SIR template, adding
demography and seasonality can allow development of
models that closely resemble observed systems.



