Transmission dynamics and host-parasite-vector relationships in rodent-borne *Bartonella* spp.

- **Background:** *Bartonella* spp. is an erythrocytic bacterial pathogen of Malagasy rodents with different genotypes which could demonstrate unique transmission mechanisms.
- Statistical Question: Is the occurrence of S. fonquerniei on Malagasy R. rattus related to (a) the indoor/outdoor locality in which the rat is trapped, (b) abundance of E. gallinacea, and (c) the abundance of X. cheopsis on the same rat?
- Mechanistic Question: How can we explain the prevalence of different genotypes of *Bartonella* spp. by age class in Malagasy *Rattus rattus?*
- Acknowledgements: Christian and Sophia (readers); Gwen (presentation)

Cara Brook, University of Chicagp

Elucidating transmission dynamics and host-parasite-vector relationships for rodent-borne *Bartonella* spp. in Madagascar

Cara E. Brook^a,*, Ying Bai^b, Emily O. Yu^a, Hafaliana C. Ranaivoson^{c,d}, Haewon Shin^e, Andrew P. Dobson^a, C. Jessica E. Metcalf^{a,1}, Michael Y. Kosoy^{b,1}, Katharina Dittmar^{e,1}

Statistical Question:

Is the occurrence of *S. fonquerniei* on Malagasy *R. rattus* related to (a) the indoor/outdoor locality in which the rat is trapped, (b) abundance of *E. gallinacea*, and (c) the abundance of *X. cheopsis* on the same rat?

- Response Variable: pres/abs S. fonquerniei
- Predictor Variables: abundance of

E. gallinacea (numeric); abundanceof *X. cheopsis* (factor);indoor/outdoor locality (factor)

- Family: "binomial"
- Link: logit
- Hypothesis: *S. fonquerniei* occurrence is related to low abundance of *X. cheopsis* & outdoor status locality
- R code:

glm(pres/abs *S. fonquerniei* ~ abundance *X. cheopsis* + abundance *E. gallinacea* + indoor_outdoor, family="binomial", data = madarat)

Mechanistic Question:

How can we explain the prevalence of different serotypes of *Bartonella* spp. by age class in Malagasy *Rattus rattus?* S = susceptible rats $\lambda = force of infection:$

Next Steps:

- 1. Conduct further field studies in lowland regions of Madagascar to determine whether the distribution of *B. elizabethae* is limited to the highland range of *S. fonquerniei*
- 2. Conduct serological tests on *R. rattus* blood to attempt to identify a whether *Bartonella* spp. negative rats are recovered or susceptible.
- 3. Fit relevant mechanistic transmission models to age-seroprevalence data.

Investigating coinfections in the spongy moth-fungus-virus system

Background: The spongy moth, *Lymantria dispar*, is an invasive lepidopteran (family: Lymantriidae) that defoliates hardwood trees across North America. Its population dynamics are driven by epizootics (epidemics in animals) of two fatal, environmentally-transmitted pathogens: a fungus, *Entomophaga maimaiga*, and a baculovirus, *Ld-nucleopolyhedrovirus*. Coinfections are detected in nature, but we do not understand what factors drive the presence of coinfection, or how coinfections influence spongy moth population dynamics.

Statistical Question: What is the relationship between environmental factors (rainfall, relative humidity, temperature) and the presence of coinfections?

<u>Mechanistic Question</u>: How do coinfections drive spongy moth population dynamics?

Acknowledgements: Christian and Cara (readers); Gwen (presentation)

 $\mathbf{New Hampshire}$

Year

Sophia Horigan, University of Chicago

Statistical Question:

What is the relationship between environmental factors and the presence of coinfections?

Response Variable: cumulative number of coinfections in a population

Predictor Variable: temperature, relative humidity, rainfall, site

Family: "poisson"

Link: log

<u>Hypothesis</u>: Sites with higher rainfall, higher humidity, and moderate temperatures will have a higher number of cumulative coinfections.

<u>R code:</u>

glmer(cum. # coinfections~rainfall + temperature + relative
humidity + (1| site), family = "poisson", data=infection.data)

Sophia Horigan, University of Chicago

Mechanistic Question:

How do coinfections drive spongy moth population dynamics?

<u>States</u>

- S susceptible caterpillars
- $I_{f,E}$ early fungus infected
- $I_{\text{f,L}}-$ late fungus infected
- $I_{v,E}$ early virus infected
- $I_{v,L}$ late virus infected
- I_{fv} coinfected
- F fungal spores in the environment V viral particles in the environment

Parameters

- β_f fungus transmission
- β_v virus transmission
- $\delta_{
 m f}$ progression to late fungus infection
- $\delta_{\rm v}$ progression to late virus infection
- μ_{v} conversion of dead insect to virus particles
- μ_f conversion of dead insect to fungal spores
- v_f fungal spore decay
- v_v viral particle decay

Investigating coinfections in the spongy moth-fungus-virus system

Next Steps:

- 1. Conduct field sampling at all sites for at least two more years to get infection data across a range of annual weather conditions.
- 2. Fit the mechanistic model to field data.
- 3. Extend the model to long-term dynamics by incorporating spongy moth reproduction and pathogen overwintering dynamics.
- 4. Use the long-term model to predict the future of spongy moth populations under climate change.

Age mediated viral shedding in Malagasy fruit bats

Background: Previous work in our lab has shown that age class and sex of bats impacts seroprevalence for henipaviruses and filoviruses. However, we do not know how viral shedding in bats from active infections impact age-seroprevalence.

Statistical question: How does age class drive viral load in Malagasy fruit bats?

Mechanistic question: How does viral shedding differ between juvenile and adult Malagasy fruit bats?

Acknowledgement to people who have evaluated these models: Cara Brook, Sophia Horigan (readers); Nuzha (presentation)

Disentangling serology to elucidate henipa- and filovirus transmission in Madagascar fruit bats

<u>Cara E. Brook</u>,^{⊠ 1, 8} <u>Hafaliana C. Ranaivoson</u>, ^{2, 3} <u>Christopher C. Broder</u>, ⁴ <u>Andrew A. Cunningham</u>, ⁵ <u>Jean-Michel Héraud</u>, ² <u>Alison J. Peel</u>, ⁶ <u>Louise Gibson</u>, ⁵ <u>James L. N. Wood</u>, ⁷ <u>C. Jessica Metcalf</u>, ^{1,†} and <u>Andrew P. Dobson</u>^{1,†}

Gwen Kettenburg, UChicago

Statistical question: How does age class of Malagasy fruit bats mediate viral load?

Hypothesis: Adult bats shed more virus than juvenile bats

Response variable: presence/absence of coronavirus, filovirus, lyssavirus, and/or henipavirus

Predictor variable: age, bat species, virus family

Distribution: "binomial"

Linker: logit

Species Viral family PCR pos/neg ratios Age Each indiv. has an age associated with it E. dupreanum Coronavirus 10/90 n=100 Filovirus 0/100 n=100 Each indiv. has an age associated with it Lyssavirus 12/68 n=100 Each indiv. has an age associated with it Henipavirus 25/75 n=100 Each indiv. has an age associated with it R. madagascariensis Coronavirus 8/92 n=100 Each indiv. has an age associated with it Filovirus 2/98 n=100 Each indiv. has an age associated with it 17/83 n=100 Each indiv. has an age associated with it Lyssavirus Henipavirus 0/100 n=100 Each indiv. has an age associated with it P. rufus Coronavirus 9/91 n=100 Each indiv. has an age associated with it Filovirus 0/100 n=100 Each indiv. has an age associated with it Lyssavirus 10/90 n=100 Each indiv. has an age associated with it Henipavirus 0/100 n=100 Each indiv. has an age associated with it

R function: glmer(presence/absence virus~age+(1|bat/virus), family="binomial", data=mada.bat.age.virus.shedding

Nest virus family in bat fam as rndm effect for glmer

Mechanistic question: How does viral shedding differ between juvenile and adult Malagasy fruit bats?

Parameter	Description
Μ	Maternally immune
S	Susceptible
1	Infectious/infected
R	Recovered

Parameter	Description
ν	Births
ν_{M}	Births from maternally immune adults
ν_{l}	Births from infected/infectious adults
μ	Deaths
μ	Deaths from infection
λ_{j}	Virus transmission rate in juveniles
λ _a	Virus transmission rate in adults
	Recovery rate in juveniles
Ya	Recovery rate in adults
Ψ	Maternal antibody waning
Nj	Juvenile population size
N _a	Adult population size
ϕ_j	Antibody waning, susceptible again in juveniles
	Antibody waning, susceptible again in adults
ε _j	Persistently infected or latent in juveniles, infected- >infectious or latent->infectious
ε _a	Persistently infected or latent in adults, infected- >infectious or latent->infectious
θ	Aging rate from juvenile to adult

Next steps:

- Generate family level PCR data for coronaviruses, lyssaviruses, filoviruses, henipaviruses (presence/absence data)
- Use Sanger sequencing from positive hits to design specific virus primers
- Generate qPCR data for above viruses (quantitative data)
- Fit relevant mechanistic model to relevant age-qPCR data for each viral family.

