E2M2: Model evaluation and comparison: an example
outbreak

Jessica Metcalf; ecmetcalf@princeton.edu

Simulating an outbreak

A directly transmitted infection, with a short generation time emerges in a population where everyone is
susceptible. Individuals can be in 3 states, i.e., susceptible (‘S’), infected (‘I’) and recovered (‘R’). We can
write the function that defines this process, assuming that the total population size is constant, which means
we don’t need to keep track of the (‘R’) compartment. The function is:

sir <- function(t,y,parms){
with(c(as.list(y),parms),q{
dSdt <- -beta*xS*I/N
dIdt <- beta*S*I/N - gammaxI
list(c(dSdt,dIdt))
1))
}

We define a starting population with 1000 susceptible individuals and 2 infected individuals; and a list of
parameters that define the processes, 3, the transmission rate, and ~, the recovery rate (defined as 1/infectious
period). We also assume that the population size, N, is the same as the starting number of susceptible
individuals for simplicity:

pop.SI <- c(S = 1000,I = 2) # Starting population structure
values <- c(beta = 1.1, # Transmission coefficient
gamma = 1/12, # Recovery rate
N=1000) # Population size (constant)

As you know, we can calculate the value of the basic reproduction number Ry = /7, as follows:
RO <- values["beta"]/values["gamma"] # value of RO

RO

beta

13.2

As in the structured population exercise example, we can use the function lsoda, here taking as our time-unit
1 day, setting a small time-step (2 days), and running it out across 71 days:

library(deSolve)
times <- seq(0,71,by=2)

ts.sir <- data.frame(lsoda(

y = pop.SI, # Initial conditions for population
times = times, # Timepoints for evaluation

func = sir, # Function to evaluate

parms = values # Vector of parameters

))

and then we can plot this:

mailto:cmetcalf@princeton.edu

plot(ts.sir[,"time"],ts.sir[,"I"], xlab="Time", ylab="Infected", type="1")

500
I

Infected
300

0 100
I

I I I I I I I I
0 10 20 30 40 50 60 70

Time

The epidemic burns itself out (i.e., at the end, the number of infected individuals is zero).

Simulating the observation process

Usually during an outbreak, we only have data on the number of cases - i.e., we have no data on numbers of
susceptible or recovered individuals. Furthermore, the probability of observing a case is often less than 1, i.e.,
it is the outcome of a binomial process. We can simulate something like this by defining the number of cases
observed as:

cases <- rbinom(nrow(ts.sir),floor(ts.sir[,"I"]),0.7)

i.e., we are assuming that 0.7 of the ‘true’ number of cases are observed in each time-step. Note that the
function ‘rbinom’ requires integers, but our function ‘ts.sir’ returns continuous variables (i.e., there can be
10.7 individuals). To get around this, we are simply using the function ‘floor’.

An underfitted model

An underfitted model might be one that quite simply fits an overall mean across the whole time-series. This
would mean that there is one parameter in the model. We could simply calculate this mean (using the R
function ‘mean) or we can use the 'lm’ machinery to calculate it, e.g., via:

underfit <- 1lm(cases ~ 1)

An overfitted model

An overfitted model might be one that fits a different number of cases for every two subsequent observations
(so every four days), i.e.,

pull out every 2nd measurement

- the 'seq' command creates an index 1,3,5,

new.time <- ts.sir[seq(l,nrow(ts.sir), by=2),"time"]

we repeat them twice to have something of same length as the data

and add 1/2 of the difference between two time-steps, since our average of cases should also reflect
new.time <- rep(new.time,each=2)+0.5*diff (times) [1]

we fit this using a linear model
overfit <- Im(cases ~ as.factor(new.time)-1)

By including “-1”, we ensure that R does not fit an overall intercept, so we will have a coefficient estimated
for every time-point in ‘new.time’. We’ve done this here just to make things easier for the plotting (below)

Comparison

We can plot both the cases observed, and the under- and over-fitted models for comparison:
plot(ts.sir[,"time"],cases, pch=19, xlab="Time", ylab="Infected")

points(unique(new.time) ,overfit$coeff, type="b", col=2,1lty=1,pch=19, cex=0.6)

points(unique(new.time) ,rep(underfit$coeff,length(unique(new.time))), col=4, pch=19, cex=0.6, type="b")

S _
o .0.
o A
o °
<
S \'
2 &
S \
£ 8 4 . .
> N
O_ [] O—.—O—.—O—: — @ — 0 — 6 — 06— & — 06— 06— 06— 0 —
1 /e o,
o - e°® M
I I I I I I I I
0 10 20 30 40 50 60 70
Time

The under-fitted model (blue) is very bad at telling us what is happening both at the epidemic peak and
after the epidemic has gone away (and is likely to violate the assumptions of regression). The over-fitted
model tells us quite accurately what happens in this outbreak. The problem with the overfitted model is that
it is not clear what it adds to our understanding beyond the data - and its very hard to see what you might
do with this model in any new circumstances.

Fitting a mechanistic model

We can also fit a mechanistic model to this same data - we have an advantage here in that we know what
the ‘true’ model is, captured by the function ‘sir’ above. Of course, this will not be the case in many

realistic situations. We can define a likelihood function for the data, by defining a function that simulates the
time-series using our chosen model of the dynamics (here, captured by the function ‘sir’) and the chosen
parameters, then evaluate this against cases, using a binomial likelihood to take into account the observation
process:

like.cases <- function(par,cases,pop.SI=c(S = 1000,I = 2),do.plot=FALSE){

#plug 'params' into a named vector (which lsoda needs)

values <- c(beta = par[1], # Transmission coefficient
gamma = par[2], # Recovery rate
N=as.numeric(pop.SI["S"])) # Assume S=N

#run our model with these parameters
ts.sir <- data.frame(lsoda(

y = pop.SI, # Initial conditions for population
times = times, # Timepoints for evaluation

func = sir, # Function to evaluate

parms = values # Vector of parameters

))

#put obs. prob. on logit scale, to avoid tssues where >1 or <0
rho <- exp(par[3])/(1+exp(par[3]))

#get the likelihood

like <- dbinom(cases,floor(ts.sir[,"I"]),
rho, ## put obs on logit scale
log=TRUE)

#plot if wanted (this gives us a way to understand problems)

if (do.plot){

par (mfrow=c(2,1)) # make 2 rows and 1 column

plot(ts.sir[,"time"],ts.sir[,"I"]*rho,type="1",col=2,
ylim=range(c(ts.sir[,"I"]*rho,cases)),xlab="time", ylab="cases")

legend("topright",legend=c("cases (data)", "estimated cases"),

pch=c(19,NA) ,1ty=c(NA,1),col=c(1,2), bty="n", cex=0.5)

points(ts.sir[,"time"],cases,pch=19,col=1)

plot(ts.sir[,"time"],-like,xlab="time", ylab="log likelihood",
pch=15, cex=0.5)

}

some edits to make a finite number come out! If more cases are rTeported
than are observed, the likelihood is -infinity, and we can't add like
like[like==-Inf] <- -exp(200)

like[like==Inf] <- exp(200)

return(-sum(like))

}

Note that here, we are assuming that we know the initial conditions (S, I, and N) but we could also be
estimating them. We put the likelihood on a log scale, since then we can add up the likelihoods; and the
function returns the negative because it is easier to minimize than maximize - we want to maximize the
likelihood, of course! To see what this function does, we can write:

testl <- like.cases(par=c(1.1,1/12,-10),cases=cases,
pop.SI=c(S = 1000,I = 2), do.plot=TRUE)

o
o
g o o ®ee,,. oo
8 o = | | ...7..
0 10 20 30 40 50 60 70
time
o
(@)
(@)
< —
T - .
é 1 . ""llll---ll--------
> ° 1 | | | | | | |
(@)
- 0 10 20 30 40 50 60 70
time
testl

[1] 38481.52

and we use the ‘do.plot’ argument, setting it to ‘TRUE’ to show us both the predicted trajectory (top
plot) and the likelihood obtained (lower plot) at each point. This provides us with a way of figuring out if
something is wrong with our function! Note that here, for times where there is no point on the likelihood
plot, then the likelihood is not finite (since we make the plot before we make the correction). This happens if
we are observing MORE cases than we are predicting, because there is no probability that allows this!

The value returned is the overall likelihood of observing this data if 3 = 1.1, v = 1/12 and the observation
probability is exp(-10)/(1+exp(-10)) (remembering that the observation probability is on the logit scale
to constrain it between 0 and 1). Note that you will not get exactly the same value that is printed here
since cases are generated stochastically! If we change the observation probability, the likelihood changes. . .;
likewise if we change other parameters.

test2 <- like.cases(par=c(1.1,1/12,0),cases=cases,
pop.SI=c(S = 1000,I = 2), do.plot=TRUE)

3
8 el ® cases (data)
(7] —— estimated cases
S
o o
time
e}
S
o " .
= p 3 D
()]] []
4] . ""l"--l-l'--- L] I |
= ° | I | | | | I I
@)
- 0 10 20 30 40 50 60 70
time
test2

[1] 606.5676

test3 <- like.cases(par=c(1.1,1/5,10g(0.7/(1-0.7))),cases=cases,
pop.SI=c(S = 1000,I = 2), do.plot=TRUE)

o
7} o ve
5 v 2%%eee, Rlbor
8 o | | oo T [X)
0 10 20 30
time
©
(@]
(@)
= -
S w3’
> ° | T T T T T T |
@]
- 0 10 20 30 40 50 60 70
time
test3

[1] 2.529091e+88

and so on. As above, you will be getting different values from mine, because ‘cases’ are generated stochastically.

Clearly, we would like to explore all of parameter space for our three focal parameters to find the most likely,
or ‘best’ model. One option is to use ‘optim’ in R to do this, giving the function starting parameters that are
reasonably close to the ‘true’ parameters, and setting our chosen method to ‘Nelder-Mead’:

tmp <- optim(par=c(1.0,0.15,10g(0.6/(1-0.6))),
fn=like.cases,cases=cases,do.plot=FALSE,
pop.SI=c(S = 1000,I = 2),
method="Nelder-Mead")
repeat starting at the output conditions to give more search space
tmp <- optim(par=tmp$par,
fn=1ike.cases,cases=cases,do.plot=FALSE,
pop.SI=c(S = 1000,I = 2),
method="Nelder-Mead")

tmp

$par

[1] 1.12745343 0.08070124 0.76494975
##

$value

[1] 97.31107

##

$counts

function gradient
166 NA
##

$convergence

[1]1 O

##

$message

NULL

It helps to run it twice to make sure it evaluates a sufficient range. Use ‘?optim’ to understand the output of
this model. The key points are that ‘par’ is the estimated parameters at the function minimum, and ‘value’
is the value of the function that has been minimized (so in our case, the minimum value of the negative
loglikelihood that optim could find). Compare the parameters returned by optim (in ‘par’) with the ones we
originally used to simulate the data:

values[1:2] #This t1s what we set in the 1st section for beta, gamma

beta gamma
1.10000000 0.08333333

tmp$par[1:2] #This is what optim thinks the parameters should be

[1] 1.12745343 0.08070124

#For the observation probability, which we set to 0.7,
exp(tmp$par [3])/(1+exp (tmp$par [3])) #This is what optim thinks it is

[1] 0.6824274

It might not be perfect, because the case data is stochastic, but, if we have adequately searched parameter
space, it should be close! We can then run the function with these estimated parameters, and plot out results
to evaluate the projections of this model (in orange) to the observed (black points), to see how well it does,
and also compare it to the ‘true’ values (i.e., the original model), reduced by the ‘true’ level of reporting
(grey lines):

pred.ts.sir <- data.frame(lsoda(

y = pop.SI, # Inttial conditions for population
times = times, # Timepoints for evaluation
func = sir, # Function to evaluate
parms = c(beta=tmp$par[1i],
gamma=tmp$par [2] ,N=1000) # Vector of parameters
))

plot(ts.sir[,"time"],cases, pch=19, xlab="Time", ylab="Infected")
points(ts.sir[,"time"],ts.sir[,"I"]*0.7, type="1", col='"grey")
points(pred.ts.sir[,"time"],pred.ts.sir[,"I"]*

exp (tmp$par[3])/ (1+exp (tmp$par[3])), type="1",col="orange")

S

2 3

o O

g —

\}

o 0 ¢
© o
L O °
o
Y o \
k= o — Co

N

s

o)

© N

— 0 @a

be‘
o Sa _
Sa
o - e2 Te®ecececcesco
[[[[[[[[
0 10 20 30 40 50 60 70
Time

We can also extract the AIC from this model using the formal definition (2K-2*log(L)) and compare it to the
ones obtained from the linear regressions using a nicely built in R function that works with regression models:

#underfit
AIC(underfit)

[1] 464.6064

#overfit
AIC(overfit)

[1] 385.6596

#mech fit which has 2 parameters
#remember that our function is designed to minimize! so do subtraction
2x2-2% (-tmp$value)

[1] 198.6221

Note that instead of using the function ‘AIC’ you could also calculate it directly using the formula; the
function ‘logLik’ also provides a way of extracting the log likelihood from linear models. Remembering that
we want the model with the smallest AIC, the mechanistic model is a clear winner.

Sensitivity analysis

How much does the outcome hinge on our estimate of a particular value, say 87 We can evalute this by
comparing the output given values of j3:

#reduce magnitude by 50/ (z by 0.5)
pred.ts.sir.0.5 <- data.frame(lsoda(y = pop.SI,
times = times,
func = sir,
parms = c(beta=0.5*%tmp$par[1],gamma=tmp$par [2] ,N=1000)))

#reduce magnitude by 50/ (z by 1.5)
pred.ts.sir.1.5 <- data.frame(lsoda(y = pop.SI,
times = times,
func = sir,
parms = c(beta=1.5*tmp$par[1],gamma=tmp$par [2] ,N=1000)))

and plot these out for comparison (dashed line is reduction of 3, dotted line is increase). Note that we could
also evaluate their impact on the likelihood, etc.

plot(ts.sir[,"time"],cases, pch=19, xlab="Time", ylab="Infected", ylim=c(0,600))
points(ts.sir[,"time"],ts.sir[,"I"]1*0.7, type="1", col="grey")
points(pred.ts.sir[,"time"] ,pred.ts.sir[,"I"]*

exp (tmp$par[3])/ (1+exp (tmp$par[3])), type="1",col="orange")
points(pred.ts.sir.0.5[,"time"] ,pred.ts.sir.0.5[,"I"]*

exp (tmp$par[3])/(1+exp(tmp$par[3])), type="1",col="orange", lty=2)
points(pred.ts.sir.1.5[,"time"] ,pred.ts.sir.1.5[,"I"]*

exp (tmp$par[3])/ (1+exp (tmp$par[3])), type="1",

col="orange", 1lty=3)

500
I
@

D
5 8 0 ¢
L o °
k=
N
_ Ce
[
o ce
o S o
— 0 T ea
Teoa
o . e% veeesesceszsco
[[[[[[[[
0 10 20 30 40 50 60 70
Time

By modifying each of the parameters in turn, we can identify parameters to which output is sensitive, which in
turn informs us as to which interventions might be most effective (e.g., here, is it better to reduce transmission,
B, or the generation time, -y given the range of what is logistically plausible?). Approaches to completely
explore the range of parameter space include Latin Hypercube Sampling, for which there is a package in R

(called ‘lhs’) for those of you who are interested.

We can also see how robust our model predictions are, the implications of uncertainty in our parameters (if
we’re not sure whether 8 is 1.1 or 1.3, how much will this change our predictions?). In more complicated
models, it may make sense to drop some parameters (also called ‘model simplification’) and we can also
explore associations between parameters (e.g., find pairs that do similar things). All of this falls within the
remit of sensitivity analysis.

10

	Simulating an outbreak
	Simulating the observation process
	An underfitted model
	An overfitted model
	Comparison
	Fitting a mechanistic model
	Sensitivity analysis

