
Model evaluation and comparison

C. Jessica E. Metcalf 
cmetcalf@princeton.edu

mailto:cmetcalf@princeton.edu


:)
:)

:) :)
:)
:)
:)

:)
:)

:)

Data

e.g., height

nu
m

be
r



:)
:)

:) :)
:)
:)
:)

:)
:)

:)

Data

Likelihood

µ

�2

Very low likelihood. 

~ the ‘probability of seeing the data’ 
given the chosen parameters 
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corresponding likelihood… multiply 
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What r2 tells us  

Parsimony, under- and over-fitting, and AIC 

Sensitivity analysis  
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Definition r2

15-11 

Rp
2 (SSEp) Criterion 

• Subscript p corresponds to the number of 
parameters in the model.   
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• Goal is maximization.  However, as we 

already know, R2 continues to go up as 
variables are added – eventually extra 
variables are just going to get in the way.   
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Adding covariates and R2

humour = b0 + b1temperature +Error
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humour = b0 + b1temperature + b2Wednesday+
b3rain + b4rejection +Error

Adding covariates and R2
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Adding covariates almost always increases 
the R2 - so a key question is when to stop. 

Adding covariates and R2



What r2 tells us  

Parsimony, under- and over-fitting, and AIC 

Sensitivity analysis  



Occam's razor

● William of Occam, 
1288-1348.

● All else being equal, 
the simplest 
explanation is the 
best one.

Parsimony, or Occam’s razor

William of Occam, 1288-1348 

All else being equal, the simplest 
explanation is the best.  

… model with fewest parameters 
is the best - as long as it can 
actually predict reasonably!



y = ↵+ �1x1 + �2x2 + ✏

y ⇠ ↵+ (�1 + �2)x1 + ✏

x1 x2but if

so? 

Interpreting covariates

is very similar to



y = ↵+ �1x1 + �2x2 + ✏

y ⇠ ↵+ (�1 + �2)x1 + ✏

so? 

hard to interpret mechanistically 
hard to extrapolate across contexts 

Interpreting covariates

x1 x2but if is very similar to



• Parsimonious  
• Conform to data  
• Balance conformity to data and parsimony 

• Not under-fitted - introduces biases    
(=missing key variables or effects) 

• Not over-fitted - introduces high variability 
(=unnecessarily complex) 

• Easily generalizable 

A good model should be: 
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Over-fitting
Here, get the mean per three data-points.  
In the extremes, one parameter per data-point. 

237 parameters
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Under-fitting
Here, one mean for all data points 

1 parameter
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Here, a mechanistic (SI) model, i.e., two parameters.  
Likelihood fitting

2 parameters

dS(t)

dt
= ��S(t)I(t)

dI(t)

dt
= �S(t)I(t)� �I(t)
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Here, a mechanistic (SI) model, i.e., two parameters.  
Likelihood fitting

2 parameters

dS(t)

dt
= ��S(t)I(t)

dI(t)

dt
= �S(t)I(t)� �I(t)

3rd  parameter increasing 
the # infected only on 
days 10-11



Akaike’s Information Criteria
"Akaike's information criterion"

● Hirotugu Akaike, 
1927-2009.

● In the 1970s he used 
information theory to 
build a numerical 
equivalent of Occam's 
razor.

Hirotugu Akaike, 1927-2009. 

In the 1970s he used information 
theory to build a numerical 
equivalent of Occam's razor. 

AIC = 2K-2logL

K is the number of parameters (‘penalty’) 
logL is the log Likelihood (‘goodness of fit’) 

The model with the lowest AIC is the preferred.



Akaike’s Information Criteria

Advantages: 
Does not require one candidate model to be correct 
Can compare nested and un-nested models 
Can compare models of different families of 
probability distributions 

Disadvantages: 
Needs reasonable amounts of data
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Sensitivity analysis

• Identifying parameters to which output is sensitive 
• Identifying intervention parameters 
• Testing robustness of model predictions 
• Explore uncertainty in parameters 
• Model simplification 
• Explore associations between parameters 



Illustration: Lymphocyte migration 
between blood and spleen

Example: lymphocyte migration between blood & spleen

Illustration: Lymphocyte migration 
between blood and spleen



Sensitivity analysis

How much does the outcome hinge on our estimate of a particular value, say —? We can evalute this by
comparing the output given values of —:
#reduce magnitude by 50% (x by 0.5)

pred.ts.sir.0.5 <- data.frame(lsoda(y = pop.SI,

times = times,

func = sir,

parms = c(beta=0.5*tmp$par[1],gamma=tmp$par[2],N=1000)))

#reduce magnitude by 50% (x by 1.5)

pred.ts.sir.1.5 <- data.frame(lsoda(y = pop.SI,

times = times,

func = sir,

parms = c(beta=1.5*tmp$par[1],gamma=tmp$par[2],N=1000)))

and plot these out for comparison (dashed line is reduction of —, dotted line is increase). Note that we could
also evaluate their impact on the likelihood, etc.
plot(ts.sir[,"time"],cases, pch=19, xlab="Time", ylab="Infected", ylim=c(0,600))

points(ts.sir[,"time"],ts.sir[,"I"]*0.7, type="l", col="grey")

points(pred.ts.sir[,"time"],pred.ts.sir[,"I"]*

exp(tmp$par[3])/(1+exp(tmp$par[3])), type="l",col="orange")

points(pred.ts.sir.0.5[,"time"],pred.ts.sir.0.5[,"I"]*

exp(tmp$par[3])/(1+exp(tmp$par[3])), type="l",col="orange", lty=2)

points(pred.ts.sir.1.5[,"time"],pred.ts.sir.1.5[,"I"]*

exp(tmp$par[3])/(1+exp(tmp$par[3])), type="l",

col="orange", lty=3)
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By modifying each of the parameters in turn, we can identify parameters to which output is sensitive, which in
turn informs us as to which interventions might be most e�ective (e.g., here, is it better to reduce transmission,
—, or the generation time, “ given the range of what is logistically plausible?). Approaches to completely
explore the range of parameter space include Latin Hypercube Sampling, for which there is a package in R

9

Example: changing the magnitude of transmission

time
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…change transmission 
and  see what happens 

to cases… 



Global sensitivity analysis

Random sampling

Latin hypercube sampling

Orthogonal sampling

Evaluate impact of values across the full range 
possible for all parameters. 

Decide on # sample points; then get one 
sample in each row & column

LHS within subspaces. 
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Conclusions

A good model should balance conformity to data 
and parsimony 

R2 tells us how well models fit (‘conformity’), but 
increases with the number of covariates 

Metrics such as AIC provide a means to evaluate 
model parsimony 

Sensitivity analysis is key to understanding the 
larger context of parameters (generalizability, etc) 
and tools exist to do it efficiently (LHS)



Conclusions

Un bon modèle devrait équilibrer conformité aux 
données, et la parcimonie 

R2 nous décrit la capture des données - mais augmente 
toujours avec le nombre de covariés 

Des metrics tel le AIC nous donnes le moyen d’évaluer 
la parcimonie d’un modèle relatif a d’autres modèles. 

L’analyse de la sensibilité est clef pour comprendre les 
paramètres dans un context plus large (si ils décrivent le 
cas general, etc) et des outils existent pour le faire 
efficacement. 


